• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterización molecular y funcional del gen PATHOGEN AND CIRCADIAN CONTROLLED 1 (PCC1) en Arabidopsis thaliana

Mir Moreno, Ricardo 17 June 2013 (has links)
Las plantas son capaces de modificar los patrones de desarrollo tras percibir ciertos tipos de estrés. En Arabidopsis, se identificó PCC1 como un regulador positivo de la transición floral en respuesta al estrés generado por irradiación con luz UV-C. El análisis de plantas transgénicas pPCC1::GUS muestra que PCC1 se expresa durante los primeros días de desarrollo en estomas y haces vasculares de cotiledones. En hojas verdaderas en formación se detecta tinción GUS en su parte basal, incluyendo los haces vasculares, y se va extendiendo completamente a toda la superficie de hojas completamente formadas. Líneas que expresan construcciones de RNAi para PCC1 (iPCC1) presentan reducidos niveles de FT y, consecuentemente, una floración más tardía. El mecanismo por el cual PCC1 podría regular la transición floral parece estar relacionado con alteraciones en la transmisión de la señal por luz. Concomitantemente, las plantas iPCC1 muestran fenotipos parcialmente escotomorfogénicos en los distintos tipos de luz ensayados de forma independiente de la acumulación y señalización de GAs. El transcriptoma diferencial de plantas iPCC1 versus plantas silvestres muestra una clara implicación de PCC1 en procesos relacionados con defensa. De acuerdo con este hecho, hemos observado que las plantas iPCC1 son más susceptibles a la infección con el oomiceto hemi-biotrofo Phytophtora brassicae y más resistentes al hongo necrotrofo Botrytis cinerea. Además, las líneas iPCC1 presentan una regulación al alza de genes de respuesta a ABA, y una mayor sensibilidad a esta fitohormona para los distintos fenotipos analizados. Finalmente, entre los genes alterados en las líneas iPCC1 se observa una sobrerepresentación de genes implicados en el metabolismo y en el transporte de lípidos. La pérdida de función de PCC1 conlleva una reducción del 70% en los niveles de fosfatidilinositol, y en menor medida de otros tipos de lípidos polares como la fosfatidilserina o la fosfatidilcolina. Además, el análisis de la composición de ácidos grasos de cada tipo de lípidos polares revela un mayor grado de insaturación de sus cadenas laterales, fundamentalmente en la fosfatidilserina y el fosfatidilinositol. PCC1 es una proteína asociada a la membrana plasmática por su extremo carboxiterminal, el cual es responsable además de la formación de homodímeros. Aunque queda por dilucidiar los mecanismos por los cuales PCC1 puede regular procesos tan dispares molecularmente como la respuesta a patógenos y la transición floral, hemos observado que PCC1 interacciona con la subunidad CSN5 del signalosoma (CSN), lo que sugiere que PCC1 podría actuar como un regulador de la función de CSN, y en última instancia, de la degradación de proteínas por ubiquitinación. / Mir Moreno, R. (2013). Caracterización molecular y funcional del gen PATHOGEN AND CIRCADIAN CONTROLLED 1 (PCC1) en Arabidopsis thaliana [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/29751 / TESIS
2

Identification of Bioactive Molecules in the Control of Flowering Time

Praena Tamayo, Jesús 02 September 2022 (has links)
[ES] El tiempo de floración es uno de los caracteres más importantes que influyen en la productividad y el rendimiento de los cultivos. La identificación de compuestos sintéticos que sean bioactivos en el control de la inducción floral es de gran interés. Su identificación podría permitirnos ajustar el tiempo de floración en los cultivos, adaptándolos a las condiciones ambientales más favorables. Para identificar estos compuestos, hemos tomado dos enfoques diferentes: un cribado genético químico y la caracterización del metaboloma de transición floral. En primer lugar, realizamos un rastreo de genética química para identificar moléculas pequeñas que tengan el potencial de controlar la expresión del florígeno, FLOWERING LOCUS T (FT) o la actividad o señalización de FT en Arabidopsis. Para ello, hemos utilizado plantas transgénicas que expresan el gen ß-GLUCURONIDASE (GUS) bajo el control del promotor FT para probar una librería de 360 moléculas preseleccionadas. Los resultados positivos obtenidos se volvieron a analizar mediante un cribado secundario basado en la expresión del gen reportero LUCIFERASE (LUC) bajo el control del promotor FT. Utilizando este enfoque, hemos identificado una molécula que induce con éxito la floración en condiciones de cultivo in vitro. En segundo lugar, hemos caracterizado la función del ácido pipecólico (Pip), una molécula previamente identificada como candidata a regular la floración. Hemos confirmado que las mutaciones en las enzimas responsables de la biosíntesis de Pip muestran una alteración en la respuesta del tiempo de floración. Además, hemos identificado un nuevo papel del Pip relacionado con el crecimiento y el tamaño de la roseta de Arabidopsis. Finalmente, utilizamos un sistema inducible basado en el promotor de CONSTANS (CO) que controla la expresión del gen endógeno de CO fusionado con el receptor de glucocorticoides de rata (CO::GR). De manera que con un solo tratamiento con dexametasona podemos inducir la floración. Con este sistema, realizamos un estudio del metaboloma de muestras de ápices y hojas mediante técnicas de metabolómica dirigida, lipidómica, cuantificación hormonal y transcriptómica. La integración de estos conjuntos de datos ómicos nos ha permitido identificar rutas metabólicas que se encuentran alteradas durante la transición floral. A su vez, la caracterización de mutantes de pérdida de función que codifican enzimas clave de esas vías metabólicas, reveló que algunos de estos mutantes mostraban un fenotipo afectado para el tiempo de floración. Entre ellos, nos enfocamos en la caracterización de los genes relacionados con el metabolismo de la rafinosa, un oligosacárido de reserva. Mutantes afectados en el gen RAFFINOSE SYNTHASE 5 (RS5) presentan un fenotipo de floración temprana y fertilidad reducida. En base a los resultados obtenidos, proponemos un modelo en el que, durante la transición floral, se produce una reestructuración de las ratios entre carbohidratos sencillos (monosacáridos y disacáridos) y de reserva, como la rafinosa. Estos cambios podrían ser modulados por el ácido abscísico (ABA) y por genes relacionados con la floración, desencadenando cambios en el metabolismo de la trehalosa y promoviendo una expresión temprana de FT. / [CA] El temps de floració és un dels caràcters amb més influència en la productivitat i el rendiment dels cultius. La identificació de compostos sintètics bioactius per al control de la inducció floral és de gran interés, ja que la seua identificació podria permetre ajustar el temps de floració dels cultius, aspecte que podria contribuir a l'adaptació a condicions ambientals més favorables. Per a identificar aquests compostos, hem portat a terme dues aproximacions diferents: un garbellat genètic químic i la caracterització del metaboloma de la transició floral. En primer lloc, hem realitzat un cribratge genètic-químicper a identificar xicotetes molècules amb potencial per a controlar l'expressió del florígen, FLOWERING LOCUS T (FT) o l'activitat o la senyalització de FT a Arabidopsis. Per a portar a terme aquest cribratge, hem utilitzat plantes transgèniques que expressen el gen ß-GLUCURONIDASE (GUS) sota el control del promotor de FT amb les quals hem assajat una llibreria de 360 molècules preseleccionades de manera prèvia. Els resultats positius obtinguts en aquest cribratge t s'han sotmés a un cribratge secundari basat en l'expressió del gen reporter LUCIFERASE (LUC) sota el control del promotor FT. La utilització d'aquesta primera aproximació ha permés la idenfiticació d'una molècula que indueix amb èxit la floració en condicions de cultiu in vitro. En En segon lloc, hem caracteritzat la funció de l'àcid pipecòlic (Pip), una molècula prèviament identificada com a candidata a regular la floració. Aquesta aproximació ens ha permet confirmar que mutacions als enzims responsables de la biosíntesi de Pip comporten una alteració al temps de floració. A més, en aquest treball hem identificat un nou paper del Pip relacionat amb el creixement i la grandària de la roseta d'Arabidopsis. Finalment, hem utilitzat un sistema induïble basat en el promotor de CONSTANS (CO) que controla l'expressió del gen endogen de CO fusionat al receptor de glucocorticoides de rata (CO::GR). Aquesta construcció ens proporciona una ferramenta amb la qual induir la floració amb un sol tractament amb dexametasona. A continuació, hem realitzat un estudi del metaboloma de mostres d'àpexs i fulles mitjançant tècniques de metabolòmica dirigida, lipidómica, quantificació hormonal i transcriptòmica. La integració d'aquest conjunt de dades ómiques ens ha permés identificar les rutes metabòliques que es troben alterades durant la transició floral. Al mateix temps, la caracterització de mutants de pèrdua de funció que codifiquen enzims clau per a aquestes rutes metabòliques, ha revelat que alguns d'aquests mutants mostren un fenotip afectat pel que fa al temps de floració. Dintre dels mutants analitzats, ens hem centrat en la caracterització dels gens relacionats amb el metabolisme de la rafinosa, un oligosacàrid de reserva. Els mutants del gen RAFFINOSE SYNTHASE 5 (RS5) presenten un fenotip de floració primerenca i fertilitat reduïda. Sobre la base dels resultats obtinguts, proposem un model en el qual, durant la transició floral, es produeix una reestructuració de les ràtios entre carbohidrats senzills (monosacàrids i disacàrids) i de reserva, com la rafinosa. Aquests canvis podrien ser modulats per l'àcid abscísic (ABA) i per gens relacionats amb la floració, i desencadenariencanvis al metabolisme de la trehalosa, així com la generació de l'expressió primerenca de FT. / [EN] Flowering time is one of the most important traits affecting crop productivity and yield. The identification of natural or synthetic bioactive compounds for the control of flowering induction is of great interest. The identification of compounds with the potential to regulate flowering could allow us to fine-tune flowering responses in crops and adapt them to the changing environmental conditions. To identify these compounds, we have taken two different approaches: a chemical genetic screening and the characterization of the metabolome of floral transition. First, we performed a chemical genetic screening to identify small molecules that have the potential to control the expression of the florigen FLOWERING LOCUS T (FT) or FT activity or signaling in Arabidopsis. We used transgenic plants expressing the ß-GLUCURONIDASE gene (GUS) under the control of the FT promoter to test a preselected library of 360 molecules. Positive hits were retested by a secondary screening based on the expression of the LUCIFERASE (LUC) reporter gene under the control of the FT promoter. Using this approach, we have identified one molecule that successfully induces flowering under in vitro culture conditions. Secondly, we have characterized the function of pipecolic acid (Pip), a molecule previously identified as a candidate to regulate flowering time. We have confirmed that mutations in enzymes responsible for Pip biosynthesis display an altered flowering response. A new role for Pip in rosette growth is also revealed in this work. Finally, we used an inducible system based on the promoter of CONSTANS (CO) driving the expression of CO fused to the rat glucocorticoid receptor (CO::GR). Such a construction provides a tool to induce flowering with a single dexamethasone treatment. We then performed a comprehensive metabolomic study of the shoot apex and leaf samples that included targeted metabolomics, lipidomics, hormone quantification, and transcriptomics. Integration of these omic datasets has allowed us to point out metabolic pathways that are altered during floral induction. Characterization of loss-of-function mutants coding key enzymes of those metabolic pathways revealed that some of these mutants showed a flowering time phenotype. Among them, we focused on the characterization of the contribution of the raffinose metabolism, a storage oligosaccharide, to the determination of flowering time. Mutants affecting RAFFINOSE SYNTHASE 5 (RS5) exhibit an early flowering phenotype and reduced fertility. We propose a model in which the balance between simple and storage carbohydrates in the apex changes during floral induction. This change could be modulated by ABA and flowering-related genes, and it triggers changes in trehalose metabolism, promoting flowering by an early FT upregulation. / Praena Tamayo, J. (2022). Identification of Bioactive Molecules in the Control of Flowering Time [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185177 / TESIS

Page generated in 0.0428 seconds