• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lithographic fabrication, electrical characterization and proof-of-concept demonstration of sensor circuits comprising organic electrochemical transistors for in vitro and in vivo diagnostics / Fabrication lithographique, caractérisation électrique et preuve de concept des circuits de capteurs comprenant des transistors organiques électrochimiques, à des fins diagnostiques in vitro et in vivo

Braendlein, Marcel 24 March 2017 (has links)
Grâce à leurs excellentes propriétés mécaniques, électriques et chimiques, les dispositifs organiques électroniques à base de polymères conducteurs peuvent résoudre l’incompatibilité entre les modules électroniques rigides en silicone et les exigences des tissus mous qui constituent l’environnement biologique. Les avancées en matière de semiconducteurs organiques et en microélectronique ont donné naissance à la bioélectronique. Cette discipline emploie des capteurs à des fins diagnostiques, telles que la détection des métabolites ou la mesure d’un potentiel d’action neuronal, et des actionneurs à des fins thérapeutiques, comme l’application locale d’un traitement à l’intérieur même du corps, ou la stimulation cérébrale profonde afin de guérir un trouble neurologique. En bioélectronique, l’utilisation de matériaux organiques, tels que le polymère conducteur poly(3,4-éthylènedioxythiophène) polystyrène sulfonate de sodium (PEDOT:PSS) a permis de développer des composants électroniques biomédicaux de qualité exceptionnelle, comme par exemple le transistor organique électrochimique (OECT), qui ont été testés in vitro et in vivo. Ce manuscrit explique en détail la fabrication, la fonctionnalisation et la caractérisation du OECT à base de PEDOT:PSS. Afin de pouvoir intégrer ce capteur à des systèmes de mesure biomédicaux déjà établis, l’OECT est intégré à des circuits simples, tels qu’un amplificateur de tension ou un pont de Wheatstone. Ces circuits sont mis à l’épreuve de la pratique clinique, dans le cas de mesures électrocardiographiques, ou de détection de métabolites dans des cellules cancéreuses. Cela permet d’apprécier à la fois leur applicabilité, et leurs limites. / Due to their outstanding mechanical, electrical and chemical properties, organic electronic devices based on conducting polymers can bridge the gap between the rigid silicon based read-out electronics and the soft biological environment and will have a huge impact on the medical healthcare sector. The recent advances in the field of organic semiconductors and microelectronics gave rise to a new discipline termed bioelectronics. This discipline deals with sensors for diagnostic purposes, ranging from metabolite detection and DNA recognition all the way to single neuronal firing events, and actuators for therapeutic purposes, through for example active local drug delivery inside the body or deep brain stimulation to cure neurological disorder. The use of organic materials such as the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in the field of bioelectronics has brought about a variety of outstanding electronic biomedical devices, such as the organic electrochemical transistor (OECT), that have been implemented for both in vitro and in vivo applications. The present manuscript gives a detailed explanation of the fabrication, functionalization and characterization of OECTs based on PEDOT:PSS. To be able to intercept this sensor element with traditional biomedical recording systems, the OECT is implemented into simple circuit layouts such as a voltage amplifier or a Wheatstone bridge. These sensor circuits are then applied to real-life biomedical challenges, such as electrocardiographic recordings or metabolite detection in tumor cell cultures, to demonstrate their applicability as well as their limitations.
2

Micro-fabrication of wearable and high-performing cutaneous devices based on organic materials for human electrophysiological recordings / Micro-fabrication de dispositifs ambulatoires, cutanés, hautement performants et à base de matériaux organiques pour l’enregistrement de signaux électrophysiologiques sur l’homme

Lonjaret, Thomas 25 October 2016 (has links)
L’électrophysiologie est l’étude des signaux électriques et électrochimiques générés par certaines cellules spécifiques tout comme par des organes entiers. Elle donne aux médecins l’opportunité de suivre le fonctionnement d’un seul neurone mais aussi de l’intégralité du cerveau. L’enregistrement de ces activités est essentiel pour le diagnostic de pathologies aussi diverses que les arythmies cardiaques, l’épilepsie ou la dégénération musculaire. Dans cette thèse, nous étudions différents types d’électrodes cutanées à base de matériaux organiques, de leur conception à leur évaluation préclinique. Notre approche est basée sur l’utilisation du polymère conducteur PEDOT :PSS et de gels ioniques, qui réduisent l’impédance de l’interface électrode-peau. De plus, nos électrodes sont conçues avec différents substrats fins et souples, plastiques ou textiles. Ceci appelle de nouvelles techniques de fabrications adaptées à ces substrats et aux matériaux organiques. Les électrodes sont caractérisées puis testées sur des volontaires afin de démontrer leurs excellentes performances par rapport aux électrodes médicales usuelles. L’évaluation de leur capacité à réduire le bruit et de leur stabilité sur plusieurs jours est effectuée sur des signaux venant des activités musculaires, cardiaques et cérébrales. Nous présentons également une électrode microscopique dite « active », basée sur le transistor organique électrochimique. Celui-ci permet d’amplifier et de filtrer in situ le signal. Parce que nos électrodes organiques cutanées possèdent un important potentiel industriel et clinique, nous étudions maintenant leur intégration dans des dispositifs médicaux de pointe. / Electrophysiology is the study of electrical and electrochemical signals generated by specific cells or whole organs. It gives doctors the opportunity to track the physiological behavior of a single neuron, as well as the integral brain. The recording of these activities is essential to diagnose and better understand diseases like cardiac arrhythmias, epilepsy, muscular degeneration and many more. In this thesis, we study different types of cutaneous electrodes based on organic materials, from conception to pre-clinical evaluation. Our approach is based on the usage of PEDOT:PSS conducting polymer and ionic gels in order to reduce impedance at the skin-electrode interface. Moreover, the substrate of our electrodes is made with different materials such as thin and conformable plastics and textiles. Our devices are then flexible, motion resistant and can be integrating into clothes. We developed new fabrication processes, considering the different substrates and organic materials specifics. The electrodes were characterized and then tested on human volunteers to show their excellent performance in comparison to standard medical electrodes. The evaluation of noise reduction capabilities and possibilities to perform long-term recordings were established on signals coming from muscles, heart and brain. Furthermore, we present a hundred micrometer-small “active” electrode, based on the organic electrochemical transistor. It enables in situ amplification and filtering of recorded signals. The wearable organic electrodes developed in this work are of great industrial and clinic interest. Future work will aim to integrate these technologies into state-of-the-art medical devices.

Page generated in 0.0819 seconds