• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thin film studies of planar transition metal complexes

Whyte, Alex January 2013 (has links)
At present the field of molecular electronics - also known as molecular semiconductors, organic semiconductors, plastic electronics or organic electronics - is dominated by organic materials, both polymeric and molecular, with much less attention being focused on transition metal based complexes despite the advantages they can offer. Such advantages include tuneable frontier orbitals through the ligand/metal interaction and the ability to generate stable paramagnetic species. Devices containing radical materials are particularly interesting in order to examine the interplay between conduction and spin - an effect which is not yet properly understood but can give rise to exotic behaviour. A series of homoleptic, bis-ligand Ni(II) and Cu(II) complexes were prepared using three structurally related phenolic oxime ligands, 2-hydroxy-5-t-octylacetophenone oxime (t-OctsaoH), 2-hydroxy-5-n-propylacetophenone oxime (n-PrsaoH) and 2- hydroxyacetophenone oxime (HsaoH). The complexes were characterised by single-crystal X-ray diffraction, cyclic voltammetry, UV/Vis spectroscopy, field-effect-transistor measurements, DFT/TD-DFT calculations and in the case of the paramagnetic species, EPR and magnetic susceptibility. Variation of the substituent on the ligand from t-octyl to n-propyl to H enabled electronic isolation of the complexes in the crystal structures of M(t-OctsaoH)2, which contrasted with π-stacking interactions observed in the crystal packing of M(n-PrsaoH)2 and of M(HsaoH) (M = Ni, Cu). This was further evidenced by comparing the antiferromagnetic interactions observed in samples of Cu(n-PrsaoH)2 and Cu(HsaoH)2 with the ideal paramagnetic behaviour for Cu(t-OctsaoH)2 down to 1.8 K. Despite isostructural single crystal structures for M(n-PrsaoH)2, thin-film X-ray diffraction and SEM revealed different morphologies depending on the metal and the deposition method employed. However, the complexes of M(n-PrsaoH)2 and M(HsaoH) failed to demonstrate significant charge transport in an FET device despite displaying the ability to form π- stacking structures. A series of planar Ni(II), Cu(II) and Co(II) dibenzotetraaza[14]annulenes (dbtaa) and dinapthotetraaza[14]annulenes (dntaa) were synthesised and studied crystallographically, optically, electrochemically and magnetically. Thin films of each of these complexes have been prepared by vacuum deposition to evaluate the field-effect transistor (FET) performance as well as the morphology and crystallinity of the film formed. Single crystal data revealed that Ni(dbtaa) and Cu(dbtaa) are isomorphous to each other, with Co(dbtaa) displaying a different crystallographic packing. The electrochemistry and UV/Vis absorption studies indicate the materials are redox active and highly coloured, with molar extinction coefficients as large as 80,000 M-1cm-1 in the visible region. The paramagnetic Cu(II) and Co(II) complexes display weak 1-dimensional antiferromagnetic interactions and were fit to the Bonner-Fisher chain model. The data revealed that the Co(II) species possesses much stronger magnetic exchange interactions compared with the Cu(II) complex. Each of the materials formed polycrystalline films when vacuum deposited and all showed ptype field-effect transistor behaviour, with modest charge carrier mobilities in the range of 10-5 to 10-9 cm2 V-1 s-1 . SEM imaging of the substrates indicates that the central metal ion, and its sublimation temperature, has a crucial role in defining the morphology of the resulting film. Structurally related Cu(II) and Ni(II) dithiadiazoletetraaza[14]annulene (dttaa) macrocycles were synthesised and studied in the context of their thin film electrochemical, conducting and morphological properties. Both the Ni(II) and Cu(II) complexes were found to be volatile under reduced pressure, which allowed crystals of both materials to be grown and the single crystal structures solved. Interestingly, the crystal packing of these heterocyclic macrocycles varies depending on whether the central metal ion is Cu(II) or Ni(II), which is in contrast to the analogous dibenzotetrazaannulenes complexes. Soluble Ni(II) analogues containing benzoyl groups on the meso- positions of the macrocycle (dttaaBzOR) were also prepared and contrasted with the insoluble Ni(dttaa) complexes in terms of their solution optical and electrochemical properties. Thin film electrochemical studies of Cu(dttaa) and Ni(dttaa) showed chemically reversible oxidative processes but on scanning to reductive potentials the films disintegrated almost immediately as the bulky counter tetrabutylammonium cation entered the thin film. FET studies undertaken on polycrystalline films of both complexes, using various device configurations and surface treatments, failed to realise any gate effect. Thin film XRD measurements indicate that films of both complexes formed by vacuum deposition are crystalline and contain a mixture of molecular alignments, with molecules aligning “edge on” and “face down” to the substrate. SEM imaging failed to effectively resolve the morphology of the films implying the sizes of the crystallites are small, which may help to explain the lack of FET effect. A series of bis-ligand diimine Ni, Cu and Pd complexes have been synthesised from the ligand 4,5-bis(dodecyloxy)benzene-1,2-diamine (dbdaH2). The same ligand was also used to prepare a series of soluble Cu(II) and Ni(II) tetraaza[14]annulene macrocycles. All the bis-ligand diimine complexes were found to suffer from instability in air due to the ease at which the complexes are oxidised. The Ni complex, Ni(dbda)2, was found to display a NIR transition in the region of 971 to 1024 nm depending on the polarity of the solvent that the molecule is dissolved in. Solution electrochemistry studies of Ni(dbda)2 reaffirmed the facile nature of the first oxidative process, with the HOMO energy calculated at -4 eV by hybrid-DFT. This compound failed to yield semiconducting behaviour in an FET device despite the use of surface treatments aimed at promoting suitable molecular alignment across the conducting channel.
2

Solution-processed zinc-tin oxide thin-film transistors and circuit applications

Lee, Chen-Guan, 1982- 21 June 2011 (has links)
Amorphous oxide semiconductors are of potential interest in the display industry due to their high carrier mobility, transparency at visible wavelengths and excellent operational stability. In this dissertation, n-channel zinc-tin oxide thin-film transistors are fabricated based on a solution-based deposition approach, which allows low fabrication cost and high throughput. The effects of device configuration and process conditions on transistor performance are investigated, and circuit applications including inverters, amplifiers, and ring oscillators are demonstrated. Charge transport in the zinc-tin oxide field-effect transistors is also investigated. A transition from thermally-activated to band-like transport is observed with increasing carrier concentration in high mobility samples, which agrees well with the key predictions of the multiple trap and release model and also Mott’s mobility edge model. In addition, velocity distribution of charge carriers is studied with a time-resolved technique. This provides a more detailed picture of charge transport in field-effect transistors. P-channel organic semiconductor field-effect transistors are also investigated with a view to combine them with n-channel amorphous oxide transistors to create a hybrid organic-inorganic complementary technology. / text
3

Study of Parasitic Barriers in SiGe HBTs Due to P-n Junction Displacement and Bias Effects

Mathur, Nitish 11 October 2001 (has links)
No description available.
4

Compact Modeling Of Asymmetric/Independent Double Gate MOSFET

Srivatsava, J 09 1900 (has links) (PDF)
For the past 40 years, relentless focus on Moore’s Law transistor scaling has provided ever-increasing transistor performance and density. In order to continue the technology scaling beyond 22nm node, it is clear that conventional bulk-MOSFET needs to be replaced by new device architectures, most promising being the Multiple-Gate MOSFETs (MuGFET). Intel in mid 2011 announced the use of bulk Tri-Gate FinFETs in 22nm high volume logic process for its next-gen IvyBridge Microprocessor. It is expected that soon other semiconductor companies will also adopt the MuGFET devices. As like bulk-MOSFET, an accurate and physical compact model is important for MuGFET based circuit design. Compact modeling effort for MuGFET started in late nineties with planar double gate MOSFET(DGFET),as it is the simplest structure that one can conceive for MuGFET devices. The models so far proposed for DG MOSFETs are applicable for common gate symmetric DG (SDG) MOSFETs where both the gates have equal oxide thicknesses. However, for practical devices at nanoscale regime, there will always be some amount of asymmetry between the gate oxide thicknesses due to process variations and uncertainties, which can affect device performance significantly. At the same time, Independently controlled DG(IDG) MOSFETs have gained tremendous attention owing to its ability to modulate threshold voltage and transconductance dynamically. Due to the asymmetric nature of the electrostatic, developing efficient compact models for asymmetric/independent DG MOSFET is a daunting task. In this thesis effort has been put to provide some solutions to this challenge. We propose simple surface-potential based compact terminal charge models, applicable for Asymmetric Double gate MOSFETs (ADG) in two configurations1) Common-gate 2) Independent-gate. The charge model proposed for the common-gate ADG (CDG) MOSFET is seamless between the symmetric and asymmetric devices and utilizes the unique so-far-unexplored quasi-linear relationship between the surface potentials along the channel. In this model, the terminal charges could be computed by basic arithmetic operations from the surface potentials and applied biases, and can be easily implemented in any circuit simulator and extendable to short-channel devices. The charge model proposed for independent ADG(IDG)MOSFET is based on a novel piecewise linearization technique of surface potential along the channel. We show that the conventional “charge linearization techniques that have been used over the years in advanced compact models for bulk and double-gate(DG) MOSFETs are accurate only when the channel is fully hyperbolic in nature or the effective gate voltages are same. For other bias conditions, it leads to significant error in terminal charge computation. We demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel for a particular bias condition actually dictates if the conventional charge linearization technique could be applied or not. We propose a piecewise linearization technique that segments the channel into multiple sections where in each section, the assumption of quasi-linear relationship between the surface potentials remains valid. The cumulative sum of the terminal charges obtained for each of these channel sections yield terminal charges of the IDG device. We next present our work on modeling the non-ideal scenarios like presence of body doping in CDG devices and the non-planar devices like Tri-gate FinFETs. For a fully depleted channel, a simple technique to include body doping term in our charge model for CDG devices, using a perturbation on the effective gate voltage and correction to the coupling factor, is proposed. We present our study on the possibility of mapping a non-planar Tri-gate FinFET onto a planar DG model. In this framework, we demonstrate that, except for the case of large or tall devices, the generic mapping parameters become bias-dependent and an accurate bias-independent model valid for geometries is not possible. An efficient and robust “Root Bracketing Method” based algorithm for computation of surface potential in IDG MOSFET, where the conventional Newton-Raphson based techniques are inefficient due to the presence of singularity and discontinuity in input voltage equations, is presented. In case of small asymmetry for a CDG devices, a simple physics based perturbation technique to compute the surface potential with computational complexity of the same order of an SDG device is presented next. All the models proposed show excellent agreement with numerical and Technology Computer-Aided Design(TCAD) simulations for all wide range of bias conditions and geometries. The models are implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.

Page generated in 0.0829 seconds