• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 653
  • 107
  • 35
  • 30
  • 28
  • 18
  • 16
  • 10
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1106
  • 1106
  • 295
  • 285
  • 263
  • 124
  • 116
  • 101
  • 100
  • 100
  • 83
  • 79
  • 77
  • 74
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Application of Transition Metal Phosphine Complexes in the Modeling of Catalytic Processes: Reactivity with Hydrosilanes and Other Industrially Relevant Substrates

Zuzek, Ashley January 2014 (has links)
The first two chapters of this thesis are devoted to exploring the reactivity of electron rich molybdenum and tungsten trimethylphosphine complexes with hydrosilanes. These complexes, Mo(PMe3)6 and W(PMe3)4(n2-CH2PMe2)H, have been shown to be highly reactive species that undergo a number of bond cleavage reactions. In the presence of the hydrosilanes PhxSiH4-x (x = 0 - 4), Mo(PMe3)6 and W(PMe3)4(n2-CH2PMe2)H effect Si-H and Si-C bond cleavage, along with Si-Si bond formation; however, the products derived from these reactions are drastically different for Mo(PMe3)6 and W(PMe3)4(n2-CH2PMe2)H and are highly dependent on the substitution of the silane. Mo(PMe3)6 reacts with SiH4, PhSiH3, and Ph2SiH2 to afford novel silyl, hypervalent silyl, silane, and disilane complexes, as respectively illustrated by Mo(PMe3)4H2(SiH3)2, Mo(PMe3)4H(k2-H2-H2SiPh2H), Mo(PMe3)3H4(s-HSiHPh2), and Mo(PMe3)3H2(k2-H2-H2Si2Ph4). Mo(PMe3)4H(k2-H2-H2SiPh2H) is the first example of a complex with a hypervalent [H2SiPh2H] ligand, and Mo(PMe3)3H2(k2-H2-H2Si2Ph4) represents the first structurally characterized disilane complex. In addition to being structurally unique, these complexes also possess interesting reactivity. For example, Mo(PMe3)4(SiH3)2H2 undergoes isotope exchange with SiD4, and NMR spectroscopic analysis of the SiHxD4-x isotopologues released indicates that the reaction occurs via a sigma bond metathesis pathway. In contrast, W(PMe3)4(n2-CH2PMe2)H affords a range of products that includes metallacycle, disilyl, silane, and bridging silylene complexes. The disilyl compounds, W(PMe3)4H3(SiH2SiHPh2) and W(PMe3)3H4(SiH2Ph)(SiH2SiHPh2), exhibit the ability of W(PMe3)4(n2-CH2PMe2)H to cause both redistribution and Si-Si bond formation. A mechanism involving silylene intermediates is proposed for the generation of these complexes, and this mechanism is supported computationally. Additional support for the presence of intermediates comes from the isolation of a unique complex with a bridging silylene ligand, "WSiW". The bridging silylene bonding motif is unprecedented. The reactivity of the simplest hydrosilane, SiH4, was also examined with IrCl(CO)(PPh3)2 (i.e. Vaska's compound). Previous reports on this reaction have assigned the product as trans-IrH(SiH3)(Cl)(CO)(PPh3)2, in which the hydride and silyl ligands are mutually trans. It is noteworthy, therefore, that we have now obtained a crystal structure of the product of this reaction in which the hydride and silyl ligands are cis, namely cis-IrH(SiH3)(Cl)(CO)(PPh3)2. Calculated energies of the isomeric species also suggest that the product of this reaction was originally misassigned. These results, and the analogous reactions with germane (GeH4), are described in Chapter 4. Chapter 4 also discusses some reactions of transition metal phosphine complexes, including Ru(PMe3)4H2, Mo(PMe3)6, W(PMe3)4(n2-CH2PMe2)H, and Mo(PMe3)4(n2-CH2PMe2)H, with industrially relevant substrates. Ru(PMe3)4H2 effects the water gas shift reaction of CO and H2O to form CO2 and H2. Furthermore, Ru(PMe3)4H2 reacts with CO2, CS2, and H2S to respectively form formate, thiocarbonate, and hydrosulfido complexes. The reactivity of Mo(PMe3)6 and W(PMe3)4(n2-CH2PMe2)H towards molecules relevant to the hydrodeoxygenation industry, including dihydrofuran and benzofuran, was studied. The products of these reactions exhibit hydrogenation of unsaturated bonds and C-O bond cleavage, both of which are essential to the hydrodeoxygenation process. Mo(PMe3)4(n2-CH2PMe2)H reacts with PhI to form an alkylidyne species, [Mo(PMe3)4(CPMe2Ph)I]I, which was structurally characterized by X-ray diffraction. W(PMe3)4(n2-CH2PMe2)H forms a k2-adduct when treated with 2-seleno-2-methylbenzimidazole, namely W(PMe3)4(sebenzimMe)H. Chapter 3 discusses the development of two new ruthenaboratrane complexes, [k4-B(mimBut)3]Ru(CO)(PR3) (R = Ph, Me). The structures of these complexes are described, and their d6 metal configuration is supported by both Fenske-Hall and Natural Bond Orbital calculations. Some reactivity of these complexes was also explored. For example, [k4-B(mimBut)3]Ru(CO)(PMe3) appears to add MeI across the Ru-B bond. Finally, as an extension of the work that we have done on tungsten trimethylphosphine complexes, the structure of W(PMe3)3H6 in solution was investigated, and the results are presented in Chapter 5. T1 measurements of the hydride ligands and deuterium isotope effect shifts both confirm that this complex exists as a classical hydride in solution, which is in accord with the classical hydride formulation in the solid state that was previously determined by X-ray diffraction.
352

Carbon Dioxide Reduction using Supported Catalysts and Metal-Modified Carbides

Porosoff, Marc January 2015 (has links)
To sustain future population and economic growth, the global energy supply is expected to increase by 60% by 2040, but the associated CO₂ emissions are a major concern. Converting CO2 into a commodity through a CO₂-neutral process has the potential to create a sustainable carbon energy economy; however, the high stability of CO₂ requires the discovery of active, selective and stable catalysts. To initially probe the performance of catalysts for CO₂ reduction, CO₂ is activated with H₂, which produces CO and CH₄ as the primary products. For this study, CO is desired for its ability to be used in the Fischer-Tropsch process, while CH₄ is undesired because of its low volumetric energy density and abundance. Precious bimetallic catalysts synthesized on a reducible support (CeO₂) show higher activity than on an irreducible support (γ-Al₂O₃) and the selectivity, represented as CO:CH₄ ratio, is correlated to electronic properties of the supported catalysts with the surface d-band center value of the metal component. Because the high cost of precious metals is unsuitable for a large-scale CO₂ conversion process, further catalyst development for CO₂ reduction focuses on active, selective and low-cost materials. Molybdenum carbide (Mo₂C) outperforms precious bimetallic catalysts and is highly active and selective for CO₂ conversion to CO. These results are further extended to other transition metal carbides (TMCs), which are found to be a class of promising catalysts and their activity is correlated with oxygen binding energy (OBE) and reducibility as shown by density functional theory (DFT) calculations and in-situ measurements. Because TMCs are made from much more abundant elements than precious metals, the catalysts can be manufactured at a much lower cost, which is critical for achieving a substantial reduction of CO₂ levels. In the aforementioned examples, sustainable CO₂ reduction requires renewable H₂, 95% of which is currently produced from hydrocarbon based-feedstocks, resulting in CO₂ emissions as a byproduct. Alternatively, CO₂ can be reduced with ethane from shale gas, which produces either synthesis gas (CO + H₂) or ethylene with high selectivity. Pt/CeO₂ is a promising catalyst to produce synthesis gas, while Mo₂C based materials preserve the C-C bond of ethane to produce ethylene. Ethylene and higher olefins are desirable for their high demand as commodity chemicals; therefore, future studies into CO₂ reduction must identify new low-cost materials that are active and stable with higher selectivity toward the production of light olefins.
353

Estudo da supercondutividade em diboretos de metais de transição (MeB2), com protótipo ALB2 e suas variações / Study of the Superconductivity in Metals Transitions Diborides (MeB2), with AlB2 Prototype and Variations

Renosto, Sergio Tuan 24 April 2015 (has links)
O grupo de diboretos isoestruturais ao MgB2 com estrutura representada pelo protótipo AlB2 é considerado candidato à supercondutividade. Contudo, a existência do estado supercondutor é um fenômeno raro nesse grupo de materiais, de fato a grande maioria dos diboretos de metais de transição é caracterizada por um Tc menor que 0,7 K. Nesse grupo, os compostos normais HfB2, VB2, YB2 e ZrB2 exibem assinatura do comportamento paramagnético de Pauli em baixas temperaturas. Nesse trabalho é mostrado que a substituição parcial do metal (Hf e Zr) por V nas amostras M1-xVxB2, gera distorções da rede cristalina, com o surgimento de um estado supercondutor volumétrico. As medidas magnéticas, elétricas e térmicas revelam um Tc máximo atingindo 8,7 e 9,3 K para as respectivas amostras de composição Zr0,96V0,04B2 e Hf0,97V0,03B2, com valores elevados de ? 0Hc2(0) (~16 e ~21 T, respectivamente). Nessas amostras, os resultados a cerca do comportamento do ? 0Hc1 (T), do Cp(T) e da VHall (T), e medidas de ETS (electronic tunneling spectroscopy) em um monocristal, revelam a claras assinaturas da supercondutividade multibanda, tal como é reportado para o MgB2. Ainda, resultados mostram a que a existência do estado supercondutor no ZrB2 parece não ser uma exclusividade da substituição por V, já que é observada também na amostra de Zr0,96Y0,04B2, cujo Tc atinge 6,7 K novamente com assinatura de comportamento multibanda. Também são mostrados os resultados da existência dos comportamentos magnéticos competitivos nas amostras do sistema Zr1-xAlxB2, com um surpreendente ordenamento ferromagnético. Nesse mesmo cenário, também é mostrado que substituição de Nb por Ni é hábil em elevar a temperatura crítica do composto NbB2-? de 3,6 K para 6,0 K. Já em outros boretos, como nos sistemas Th1-xMxB12 (M = Zr, Sc, Y, Ti Hf) em condições especiais de síntese e substituição a fase ThB12 (inexistente no equilíbrio) pode ser estabilizada, onde se observa para amostra Th0,97Zr0,03B12 um Tc próximo a 5,5 K e comportamento supercondutor BCS, porém com um baixo valor do parâmetro k o que abre discussão para uma classe nova de supercondutores do tipo 1,5. / The diborides group isostructural to MgB2 represented by AlB2 prototype structure are considered important candidates for superconductivity. However, the existence of the superconducting state is a rare phenomenon in this group of materials, indeed the majority of transition metal diborides are characterized by a Tc lower than 0.7 K. In this group, the normal compounds HfB2, VB2, YB2, and ZrB2 exhibit signature Pauli paramagnetic behavior at low temperatures. In this work it is shown that the metal partial substitution (Hf and Zr) by V in M1-xVxB2 samples generates distortions of the crystal lattice, with the emergence of a bulk superconducting state. The magnetic, electric and thermal measurements reveal a maximum Tc reaching 8.7 and 9.3 K for the respective samples Zr0.96V0.04B2 and Hf0.97V0.03B2 composition with high values of ? 0Hc2(0) (~ 16 and ~ 21 T, respectively). In these samples, the results about the behavior ? 0Hc1 (T), Cp(T), and VHall (T); and ETS (electronic tunneling spectroscopy) measurements in a single crystal; reveal a clear signatures of multiband superconductivity such as reported to the MgB2. Furthermore, the results show that the existence of the superconducting state ZrB2 appears to be not exclusive by V substitution, it is also observed in the sample Zr0.96Y0.04B2 whose Tc reaches 6.7 K again with signature multiband behavior. Also shown are the results of the existence of competitive magnetic behavior in samples of Zr1-xAlxB2 system, with a surprising ferromagnetic ordering. In this same scenario, it is also shown that substitution of Nb by Ni is able to raise the critical temperature of the NbB2-? compound from 3.6 K to 6.0 K. Since other borides as in Th1- xMxB12 (M = Zr, Sc, Y, Ti Hf) systems, in special conditions of synthesis and substitution the ThB12 phase (non-existent in the equilibrium conditions) can be stabilized, which is observed to Th0.97Zr0.03B12 sample with Tc close to 5.5 K and BCS superconducting behavior, but with a low of the k parameter value opening discussion for a new class of 1.5 type superconductors.
354

Using First Row Transition Metal Hydrides as Hydrogen Atom Donors

Kuo, Jonathan Lan January 2017 (has links)
Radical cyclizations have become a mainstay of synthetic organic chemistry – useful for the construction of C–C bonds in laboratory-scale applications. However, they are seldom used the industrial scale. In large part, this is because of a reliance on Bu3SnH, widely regarded as the best synthetic equivalent to a hydrogen atom. Transition metal hydrides have emerged as promising alternative hydrogen atom sources. Over the last decade, the Norton group has studied three transition metal systems, with an emphasis on quantifying the M–H bond dissociation energies. Over time, the group has shown that, thermodynamically, first-row transition metal hydrides are good hydrogen atom donors; they often have weak M–H bonds. Modest adjustments to the M–H bond strength result in substantial changes to how a hydride processes a given organic substrate. The Norton group has also studied the kinetics of hydrogen atom transfer, and shown that transition metal hydrides are kinetically competent at transferring hydrogen atoms, both to olefinic substrates and to organic radicals. Some of the transition metal complexes are made catalytic under modest pressures of H2, so they can be used for effecting atom-economical radical reactions. I have leveraged the fundamental kinetic and thermodynamic information that has been gathered by the group to develop new radical reactions – ones that cannot be done by Bu3SnH. Herein are described two cases studies: the first is the generation of α-alkoxy radicals by hydrogen atom transfer to enol ethers (Chapter 2). The second is the development of a radical isomerization and cycloisomerization reactions (Chapter 3). Both of these developments have relied upon an understanding of M–H thermochemistry. Discovering new hydrogen atom donors will lead to discovering new radical reactions. In Chapter 4, I revisit two previously reported transition metal hydrides that are likely to transfer hydrogen atoms: (TMS3tren)CrIV–H and [CpV(CO)3H]–. Although the anionic vanadium hydride was reported as a potent hydrogen atom donor nearly forty years ago, my studies suggest that its M–H bond is actually relatively strong. I have therefore reevaluated the reactivity of [CpV(CO)3H]–, and found that although the 18 electron anionic hydride is not a good hydrogen atom donor, the oxidized 17-electron neutral CpV(CO)3H is an extremely potent one. I have made the reactions with [CpV(CO)3H]– catalytic under H2 (now the reactions are done with an added base). The catalytic reactions that use [CpV(CO)3H]– can enact the exact same transformations that tin does, so I have developed a true catalytic replacement for Bu3SnH.
355

Reactivity studies of lithium(I) and germanium(II) pyridyl-1-azaallyl compounds.

January 2005 (has links)
Chong Kim Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Abstracts in English and Chinese. / Table of contents --- p.vi / Acknowledgements --- p.i / Abstract --- p.ii / 摘要 --- p.iv / List of Compounds --- p.ix / Synthesized / Abbreviations --- p.x / Chapter Chapter 1 --- Reactivity of Pyridyl-1-azaallyl Enamido Germanium(II) Chloride / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- General Aspects of Reactivity of Heteroleptic Germylenes --- p.1 / Chapter 1.1.2 --- Synthesis of Pyridyl-1 -azaallyl Germanium(II) Chloride Complex --- p.10 / Chapter 1.1.3 --- Objectives of This Work --- p.12 / Chapter 1.2 --- Results and Discussion --- p.14 / Chapter 1.2.1.1 --- Synthesis of Chalcogenonyl Halide Complexes --- p.15 / Chapter 1.2.1.2 --- Spectroscopic Properties of 33 and 34 --- p.15 / Chapter 1.2.1.3 --- "Molecular Structures of [Ge(E){N(SiMe3)C(Ph)- C(SiMe3)(C5H4N-2)}Cl] (E = S (33), Se (34))" --- p.16 / Chapter 1.2.2.1 --- Synthesis of Group 11 Transition Metal-Pyridyl-1- Enamido Germanium(II) Chloride Complexes --- p.20 / Chapter 1.2.2.2 --- Spectroscopic Properties of 35 and 36 --- p.21 / Chapter 1.2.2.3 --- Molecular Structures of [Ge(CuI){N(SiMe3)- C(Ph)C(SiMe3)(C5H4N-2)}Cl(THF)2]4 (35) and [Ge(AuI){N(SiMe3)C(Ph)C(SiMe3)(C5H4N-2)}Cl] (36) --- p.22 / Chapter 1.2.3.1 --- "Reaction of Pyridyl-l-azaallyl Germanium(II) Chloride with 3,5-di-tert butyl-o-benzoqumone: Synthesis of [Ge{O(2,4-di-Bu'-C6H2)O}{N(SiMe3)C(Ph)C(SiMe3)- (C5H4N-2)}C1] (37)" --- p.27 / Chapter 1.2.3.2 --- Spectroscopic Properties of 37 --- p.27 / Chapter 1.2.3.3 --- "Molecular Structure of [Ge{0(2,4-di-Bu'- C6H2)O} {N(SiMe3)C(Ph)C(SiMe3)(C5H4N-2)}Cl] (37)" --- p.28 / Chapter 1.2.4.1 --- Synthesis of Boron-Germanium(II) Hydride Adduct --- p.31 / Chapter 1.2.4.2 --- Spectroscopic Properties of 38 --- p.31 / Chapter 1.2.4.3 --- Molecular Structure of [Ge(BH3){N(SiMe3)C(Ph)- C(SiMe3)(C5H4N-2)}H] (38) --- p.32 / Chapter 1.2.5.1 --- Substitution Reaction of Pyridyl-l-azaallyl Germanium(II) Chloride with Lithium Phenylacetylide --- p.34 / Chapter 1.2.5.2 --- Spectroscopic Properties of 39 --- p.34 / Chapter 1.2.5.3 --- Molecular Structure of [Ge{N(SiMe3)C(Ph)C(SiMe3)- (C5H4N-2)}(CCPh)] (39) --- p.35 / Chapter 1.2.6.1 --- Reaction of Pyridyl-l-azaallyl Germanium(II) Chloride with excess lithium; the formation of [GeC(Ph)C(SiMe3)(C5H4N-2)]2 (40) --- p.38 / Chapter 1.2.6.2 --- Spectroscopic Properties of 40 --- p.38 / Chapter 1.2.6.3 --- Molecular Structure of [GeC(Ph)C(SiMe3)(C5H4N-2)]2 (40) --- p.39 / Chapter 1.3 --- Experimental for Chapter 1 --- p.43 / Chapter 1.4 --- References for Chapter 1 --- p.50 / Chapter Chapter 2 --- Synthesis of Late Transition Metal Pyridyl-l-azaallyl Complexes / Chapter 2.1 --- Introduction --- p.55 / Chapter 2.1.1 --- General Aspects of 1 -azaallyl Metal Complexes --- p.55 / Chapter 2.1.2 --- Synthesis of Pyridyl-l-azaallyl Metal Complexes --- p.61 / Chapter 2.2 --- Results and Discussion --- p.68 / Chapter 2.2.1 --- Synthesis of Late Transition Metal Pyridyl-l-azaallyl Complexes --- p.68 / Chapter 2.2.2 --- Spectroscopic Properties of 55-59 --- p.70 / Chapter 2.2.3 --- Molecular Structures of Compounds 55-59 --- p.71 / Chapter 2.3 --- Experimental for Chapter 2 --- p.80 / Chapter 2.4 --- References for Chapter 2 --- p.83 / Appendix I / Chapter A. --- General Procedures --- p.86 / Chapter B. --- Physical and Analytical Measurements --- p.86 / Appendix II / Table A.1. Selected Crystallographic Data for Compounds 33-36 --- p.89 / Table A.2. Selected Crystallographic Data for Compounds 37-40 --- p.90 / Table A.3. Selected Crystallographic Data for Compounds 56-58 --- p.91 / Table A.4. Selected Crystallographic Data for Compound 59 --- p.92
356

Synthesis, structure and reactivity of late transition metal and rare earth metal complexes supported by N-anionic ligands. / CUHK electronic theses & dissertations collection

January 2009 (has links)
Chapter 1 gives a brief introduction to metal complexes supported by anionic nitrogen-based ligands. / Chapter 2 describes the synthesis, structural characterization and reactivity of Mn(II), Fe(II) and Co(II) amides derived from the strongly electron-withdrawing [N(C6F5)(C6H3Pr i2-2,6)]- ligand (L 1). Twelve new compounds, including the ligand precursor HL 1, and three alkali-metal and eight late transition metal derivatives of L1, were prepared. Reactions of MCl2 (M = Mn, Fe, Co) with [Li(L1)(TMEDA)] (2) yielded the monoamido complexes [M(L1)Cl(TMEDA)] [M = Mn (5), Fe ( 6), Co (7)]. Treatment of [Li(L1)(THF) 3] with MCl2 (M = Fe, Co) afforded the diamido complexes [M(L1)2(mu-Cl)Li(THF)3] [M = Fe ( 8), Co(9)]. The reaction chemistry of the Co(II) complex 7 was investigated. Treatment of the Co(II) derivative 7 with LiMe, NaN3 and NaOMe gave the corresponding methyl-, azido- and methoxide-amide complexes, namely [Co(L1)(Me)(TMEDA)] ( 10), [Co(L1)(N3)(TMEDA)] (11) and [Co(L1)2(mu-OMe)Na(TMEDA)] (12), respectively. The solid-state structures of complexes 5--12 were determined by X-ray crystallography. / Chapter 3 reports on the synthesis and catalytic properties of lanthanide(III) complexes derived from the unsymmetrical [PhC(NSiMe3)(NC6 H3Pri2-2,6)] - ligand (L2). The lithium and potassium salts of L2, and eight lanthanide(III) derivatives of L2 were synthesized. A series of Ln(III) complexes of the general formula [Ln(L 2)2(mu-Cl)2Li(TMEDA)] [Ln = Y (17), Eu (18), Er (19), Lu (20)] and [Li(THF) 4][Ln(L2)2Cl2] [Ln = Ce ( 21), Nd (22), Sm (23)] were synthesized by the reactions of anhydrous LnCl3 with two molar equivalents of [Li(L2)(TMEDA)] (15). In addition, the neutral dimeric yttrium(III) complex [Y(L2)2(mu-Cl)] 2 (24) was also prepared by the reaction of anhydrous YCl 3 with the potassium amidinate [K(L2)]n (16). The catalytic properties of complexes 20--22 towards the ring-opening polymerization of epsilon-caprolactone were also studied in this work. / Chapter 4 reports on the coordination chemistry of L2 towards divalent lanthanide metal ions. Three neutral divalent lanthanide complexes, [Ln(L2)2(THF)n] [Ln = Sm, n = 2 (25); Ln = Eu, n = 2, (26); Ln = Yb, n = 1 (27)], were prepared by treatment of LnI2(THF) 2 with the potassium amidinate [K(L2)]n . The reaction chemistry of 25--27 as one-electron transfer reagents has been examined. This led to the isolation of six lanthanide(III) complexes (28--33). Treatment of 25--27 with PhEEPh (E = Se, Te) gave the corresponding Ln(III) chalcogenolate complexes [Ln(L2)2(mu-EPh)]2 [Ln = Sm, E = Se (28); Ln = Eu, E = Se (29); Ln = Sm, E = Te ( 31)] and [Yb(L2)2(SePh)(THF)] (30). Besides, the reaction of 27 with iodine resulted in the isolation of the iodide complex [Yb(L2)2(I)(THF)] ( 32), whilst treatment of 25 with dicyclohexylcarbodiimide led to [Sm(L2)2{CyNC(H)NCy}] (33). / Chapter 5 summarizes the results of this research work. A brief suggestion on future directions of this research project is also discussed. / The present research work was focused on the coordination chemistry of the highly electron-withdrawing [N(C6F5)(C6H 3Pri2-2,6)]- ligand and the unsymmetrical [PhC(NSiMe3)(NC6H 3Pri2-2,6)- ligand. The first part of this work was centered on the synthesis, structure and reactivity of late transition metal complexes supported by the [N(C6F5)(C6H3Pr i2-2,6)]- ligand (L 1). The second part of this work dealed with the chemistry of trivalent and divalent lanthanide complexes derived from the bulky [PhC(NSiMe3 )(NC6H3Pri 2-2,6)]- ligand (L2). / Yao, Shuang. / Adviser: Hung Kay Lee. / Source: Dissertation Abstracts International, Volume: 71-01, Section: B, page: 0317. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
357

Transition metal complexes of X-bridged nitrogen heterocycles (X represents C=O, S=O, or O=S=O). / 羰基、亚砜及砜官能团桥联氮杂环配体的过度金属化合物的研究 / CUHK electronic theses & dissertations collection / Tang ji, ya feng ji feng guan neng tuan qiao lian dan za huan pei ti de guo du jin shu hua he wu de yan jiu

January 2008 (has links)
2-Pyridinyl-2-pyrazinylmethanone (L4) is able to exist in the neat ketone form and gem-diol form (2-C5H4N)C(OH) 2(2-C4H3N2) (L4a) in its Ag(I) and Cu(II) complexes. Two isostructural Cu(II) complexes [Cu(L4 a)2X2·2H2O, X = C lO4-, BF4-] with the L4a ligand taking the chelating mode are formed, in which the different linkage modes of lattice water molecules between the Cu(L4 a)22+ units lead to different space groups in crystallization. Through versatile anion-pi(pyrazinyl ring) and hydrogen-bonding interactions, the Cu(L4a)22+ units are assembled into distinct 3-D metal-organic hybrid frameworks in these two complexes. Different ligation modes of L4 in its neat ketone and gem-diol forms are found in its silver(I) complexes that exhibit diverse network structures. / By tuning the counter anion, mu2-bridging 2,6-pyridinediylbis(4-pyridinyl)methanone (L2) via two terminal 4-pyridyl N atoms links Ag(I) ions into two distinct structural motifs in its silver(I) complexes, namely infinite helical chain and metallacyclophane, which are further assembled into higher-dimensional metal-organic frameworks through Ag···Ag, pi···pi, hydrogen-bonding, Ag···O=C, carbonyl···carbonyl, as well as unconventional anion-pi(pyridyl ring) interactions. Intermolecular dipolar carbonyl···carbonyl interaction of three principal types serves as a common dominant non-covalent interaction in the supramolecular conglomeration of these complexes. / Di-2-pyrazinylmethanone (L3) readily undergoes metal-assisted hydration reaction in its Ag(I), Cu(II), Co(II) and Cd(II) complexes, and is potentially useful for the construction of extended coordination networks with its gem-diol (2-C4H3N2)2C(OH) 2 (L3a) or anionic (2-C4H3N 2)2C(OH)CO- (L3b) form as an architectural moiety. A sheet-like net, an alpha-polonium topology of the NaCl-type and a rare 1-D nanotubular coordination architecture has been generated in its Ag(I) complexes through the tuning of counter-anions. Three isostructural complexes Cu(L3a)2X2· nH2O (n = 4.5; X = ClO 4-, BF4-, PF 6-) have been obtained and characterized. The 3-D host frameworks of these complexes are constructed from the linkage of mononuclear Cu(L3a)22+ metallotectons through a combination of hydrogen-bonding and anion-pi interactions, leading to honeycomb-like channels that accommodate guest water molecules. A cubane-like Co(II) cluster stabilized by L3b and the topological structure of Cd(II) complexes with L3a have also been obtained. / Di-2-pyridinylmethanone (di-2-pyridyl ketone) is a well-known versatile ligand among the basic building blocks for the construction of metal-organic hybrid materials. It can exist in its neat form, or in the hydrated gem-diol and alcoholated hemiketal forms. In this thesis, through modification of the heterocyclic ring and the bridging functional group, we have systematically synthesized a series of transition metal complexes of five carbonyl-bridged heterocycles (L1-L5) (see P. xi) and two structural analogs with sulfinyl and sulfonyl bridging groups (L6-L7), which are expected to provide flexible coordination bonding and additional non-covalent interactions in the generation of metal-organic hybrid frameworks. / In the two mononuclear Cu(II) complexes of 2,6-pyridinediylbis(3-pyridinyl)methanone (L1) with the ligand taking a chelating mode, four distinct types of unconventional intermolecular C=O···pi interactions between the carbonyl and pyridyl rings were identified. Moreover, the mu2-bridging L1 via two 3-pyridyl N atoms proves to be an excellent building block for the construction of disilver(I) metallacyclophanes with a [Ag2(L1) 2]2+ skeleton in a series silver(I) complexes. The [Ag 2(L1)2]2+ metallacycle functions as a secondary building unit to form infinite chains through Ag···O=C or argentophilic interactions, which are further assembled into a 3-D supramolecular structure via collective weak interactions including the anion-pi interaction. The employment of different Cd(II) and Hg(II) salts to react with the flexible L1 ligand has resulted in infinite chain, mononuclear, and 3-D network structures, in which L1 takes eta1-terminal, N,N-chelating, and mu2- and mu3-bridging modes. In these complexes, C--H···O, C--H···Cl--M hydrogen bonding, pi···pi, carbonyl···carbonyl, O(perchlorate)···C=O, as well as unconventional anion···pi(pyridyl ring) interactions, play important roles in consolidation of the supramolecular frameworks. / Sulfinyldipyrazine (L7) is capable of forming intriguing architectures in various sivler(I) salts, including a series of coordination polymers exhibiting (4,4) net, infinite chain and 3-D framework structures. A remarkable characteristic of L7 is that the electron-deficient pyrazinyl ring and the sulfonyl group provide potential bonding sites for lone-pair-aromatic interactions in the supramolecular assemblies, such as anion-pi and S=O···pi(pyrazinyl ring) interactions. The S=O moiety of the sulfonyl group exhibits an affinity for the pyrazinyl ring, which is evidenced by the existence of two types of such interaction in the silver(I) complexes of L7. (Abstract shortened by UMI.) / by Wan, Chongqing. / Adviser: Thomas C. W. Mak. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3504. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 172-190). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
358

Late transition metal-carboryne complexes and their reactions with alkenes and alkynes. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Abstract not available. / Qiu, Zaozao. / Adviser: Zuowes Xie. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 150-161). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
359

The chemistry of phosphoranoimino and 1-azaallyl group 4 and 14 metal complexes. / CUHK electronic theses & dissertations collection

January 2006 (has links)
Chapter 1 provides the general review of phosphoranoimines and 1-azaallyls as ligands for group 4 and 14 metal complexes. / Chapter 2 describes the development of low-valent group 14 1,3-dimetallacyclobutanes from phosphoranoimines. Three low-valent 1,3-distannacyclobutanes 1,3-[Sn{C(Pr i2P=NSiMe3)(2-Py)}]2 ( 95), 1,3-[Sn{C(Ph2P=NSiMe3)(C6H 5)}]2 (97) and 1,3-[Sn{C(Ph2P=NSiMe 3)(PPh2)}]2 (100) were synthesized from the phosphoranoimine ligands [CH2(Pri 2P=NSiMe3)(2-Py)] (92), [CH2(Ph 2P=NSiMe3)(C6H5)] (96) and [CH2(Ph2P=NSiMe3)(PPh 2)] (99), respectively. A novel cationic tin(IV) species [HC(Pri2P=NSiMe3)(Ar)] -[SnCl3]+ (Ar = 9-anthryl) ( 104) was synthesized from [CH2(Pri 2P=NSiMe3)(Ar)] (Ar = 9-anthryl) (103). / Chapter 3 describes the reactivies of low-valent group 14 1,3-distannacyclobutanes (95 and 111) and the isolation of the enantiomers of 95 and [1-Sn{C(Pri2P=NSiMe 3)(2-Py)}3-Pb{C(Pri2P=NSiMe 3)(2-Py)}] (120). The reactions of 95 or 111 with M(CO)5(THF) (M = Cr, Mo, W), CpMn(CO)2THF (Cp = eta-C5H5), MeI and Br2 were performed. Three isomers of compound 95 (95R, 95S and 95I) and two enantiomers of compounds 120 ( 120R and 120S) and 122 (122R and 122S) were obtained by the method of recrystallization from different solvents. Heteroleptic lead(II) compound [{(Pri 2P=NSiMe3)(2-Py)CH}Pb{N(SiMe3)2} 2] (121) was synthesized, which further react with 94 to give 1,3-[Pb{C(Pri2P=NSiMe 3)(2-Py)}]2 (122). / Chapter 4 describes the development of group 4 metal complexes from phosphoranoimines. Group 4 metal imido complexes [(Me2N)2M{CH(Ph2 PN)(2-Py)}]2 (M = Zr (133), Hf (134)) and ionic compounds [ML2Cl]+2[MCl 6]2- (L = {CH(R2PNSiMe3)(2-Py)}) (135 M = Zr, R = Ph, 136 M = Hf, R = Ph, 137 M = Zr, R = Pri, 138 M = Hf, R = Pri) were synthesized. The neutral zirconium(IV) dichloride compound [ZrCl2{CH(Ph2P=NSiMe 3)(C6H5)}2] (139) was prepared by the reaction of lithium compound [(THF)2Li{CH(Ph 2PNSiMe3)(C6H5)}] (97) with ZrCl4. The catalytic activity of the compounds toward ethylene polymerization has been investigated. / Chapter 5 describes the development of group 4 metal complexes from 1-azaallyls. Lithium cyclohexenyl-1-azaallyl compound [(TMEDA)LiN(SiMe3)C(Ph)= CHCHC&parl0;SiMe3&parr0;CH2CH 2C H2] (149) and zirconium(IV) dichloride compound [Zr{N(SiMe3)C(Ph)(L)}2Cl2] (L = CHCHC&parl0;SiMe3&parr0;CH2CH 2C H2) (150) were synthesized. Novel anionic one-dimensional bifunctional lithium compound [{(THF)Li(N(SiMe3))2C}(CN)C 6H4-1,4)]n (151) has also been synthesized. Similar reactions of 1,2-dicyanobenzene, 1,3-dicyanobenzene or 1,4-dicyanobenzene with lithium amide [(Et2O)2LiN(SiMe3) 2] afforded lithium bis(1,3-diazaallyl) compounds [{(THF)2Li(N(SiMe 3))2C}C6H4-1,2)] (152), [{(THF)2Li(N(SiMe3))2C}C6H 4-1,3)] (153) and [{(THF)2Li(N(SiMe3)) 2C}C6H4-1,4)] (154), respectively. / The work presented in this thesis is mainly focused in two parts: (i) the synthesis and reactivities of low-valent main group 14 metal complexes derived from phosphoranoimines, (ii) the synthesis and catalytic studies of transition group 4 metal complexes derived from phosphoranoimines and 1-azaallyl ligands. / Wong Kam Wing. / "December 2006." / Adviser: Kevin Wing-Por Leung. / Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5233. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
360

The chemistry of osmium and ruthenium carbonyl clusters with functionalized alkyne and phosphine ligands

Ting, Fai Lung 01 January 2001 (has links)
No description available.

Page generated in 0.0666 seconds