• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 64
  • 15
  • 12
  • 9
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 260
  • 260
  • 44
  • 44
  • 41
  • 39
  • 38
  • 31
  • 31
  • 29
  • 26
  • 26
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Invasive varactor tuning of a dielectric resonator

Fox, Andrew John January 1997 (has links)
No description available.
22

Development of a synchrophasor based power systems monitoring software with a fault locator application for multi-terminal transmission lines

Cai, Yaojie 16 January 2017 (has links)
Synchrophasor technology is widely available embedded in modern power grid protection, metering, and recording devices. Utilizing synchrophasor measurements, a novel algorithm is proposed for fault location in multi-terminal transmission lines. In order to implement real-time synchrophasor applications, a software platform called “PhasorEye” was developed in this research. PhasorEye facilitates collecting synchrophasor data stream, visualization of decoded data, and implementation of synchrophasor applications as analysis tools. A laboratory setup involving a RTDS real-time digital simulator and a synchrophasor communication network was assembled to demonstrate and validate the use of the software and the proposed new fault location technique. Tests revealed several challenges in practical application of synchrophasor data for fault location and showed that the proposed fault location algorithm can accurately identify the faulted line segment and fault location. Additionally, several other synchrophasor applications developed by other University of Manitoba researchers were implemented and integrated into the software. / February 2017
23

Fractional Order Transmission Line Modeling and Parameter Identification

Razib, Mohammad Yeasin 11 1900 (has links)
Fractional order calculus (FOC) has wide applications in modeling natural behavior of systems related to different areas of engineering including bioengineering, viscoelasticity, electronics, robotics, control theory and signal processing. This thesis aims at modeling a lossy transmission line using fractional order calculus and identifying its parameters. A lossy transmission line is considered where its behavior is modeled by a fractional order transfer function. A semi-infinite lossy transmission line is presented with its distributed parameters R, L, C and ordinary AC circuit theory is applied to find the partial differential equations. Furthermore, applying boundary conditions and the Laplace transformation a generalized fractional order transfer function of the lossy transmission line is obtained. A finite length lossy transmission line terminated with arbitrary load is also considered and its fractional order transfer function has been derived. Next, the frequency responses of lossy transmission lines from their fractional order transfer functions are also derived. Simulation results are presented to validate the frequency responses. Based on the simulation results it can be concluded that the derived fractional order transmission line model is capable of capturing the phenomenon of a distributed parameter transmission line. The achievement of modeling a highly accurate transmission line requires that a realistic account needs to be taken of its parameters. Therefore, a parameter identification technique to identify the parameters of the fractional order lossy transmission line is introduced. Finally, a few open problems are listed as the future research directions. / Controls
24

Analysis of the Characteristics of Vias in Multilayer Printed Circuit Boards Using the Transmission Line Model

Tien, Tsung-Yin 04 August 2008 (has links)
In high-speed digital circuits, in order to utilize the space of printed circuit boards efficiently, the signal via is a heavily used interconnection structure to communicate different signal layers. However, the interconnection discontinuities will result in the degradation of the signal integrity and become a crucial issue for IC designers. To analyze the problems accurately and fast using the hybrid physical equivalent model which combining the transmission line model, slot model, via model, and decoupling capacitor model, etc. Based on the method, we can get a good result of simulation and compute faster than Ansoft HFSS. In addition, by the hybrid physical model method, we simulate and discuss several interesting issues such as resonance in power/ground planes, and the effect of the simultaneous switching noise, we also improve the bad effect of the printed circuit boards existing vias by some ways.
25

Fractional Order Transmission Line Modeling and Parameter Identification

Razib, Mohammad Yeasin Unknown Date
No description available.
26

Efficient automotive electromagnetic modelling

Flint, James Alan January 2000 (has links)
The Transmission Line Modelling (TLM) method is applied to the electromagnetic modelling of vehicles. Implications of increasing frequencies in computer models of electromagnetic compatibility (EMC) studies are discussed. Efficient algorithms and resource management strategies are developed With a view to producing accurate results m a realistic computational run time. Theoretical aspects covered are: (1) the development and accuracy of the TLM method; (2) an improved Partial Huygens' surface for plane wave excitation; (3) an evaluation of high-performance local and global absorbing boundary conditions. Implementation aspects of TLM addressed include: (1) the effects of arithmetic precision on link line voltage and stub impedance calculations; (2) the development of an object-oriented computer code using the Object Modelling Technique; (3) methods for estimating and managing the memory requirement and run lime of simulations. It is shown that by optimizing algorithms and carefully managing resources, sufficient improvement can be made to allow relatively sophisticated models to be run on a modest desktop computer.
27

Development of the Selection Procedure of an Insulating Foam for Its Application in Gas Insulated Transmission Lines, Demonstrated Using Syntactic Foam

January 2014 (has links)
abstract: Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications requiring direct burial or vertical installation of the transmission line. GIL uses SF6 as an insulating medium. Due to unavoidable gas leakages and high global warming potential of SF6, there is a need to replace this insulating gas by some other possible alternative. Insulating foam materials are characterized by excellent dielectric properties as well as their reduced weight. These materials can find their application in GIL as high voltage insulators. Syntactic foam is a polymer based insulating foam. It consists of a large number of microspheres embedded in a polymer matrix. The work in this thesis deals with the development of the selection proce-dure for an insulating foam for its application in GIL. All the steps in the process are demonstrated considering syntactic foam as an insulator. As the first step of the procedure, a small representative model of the insulating foam is built in COMSOL Multiphysics software with the help of AutoCAD and Excel VBA to analyze electric field distribution for the application of GIL. The effect of the presence of metal particles on the electric field distribution is also observed. The AC voltage withstand test is performed on the insulating foam samples according to the IEEE standards. The effect of the insulating foam on electrical parameters as well as transmission characteristics of the line is analyzed as the last part of the thesis. The results from all the simulations and AC voltage withstand test are ob-served to predict the suitability of the syntactic foam as an insulator in GIL. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
28

A Study of miniature methods of terahertz spectroscopy

Hone, Andrew Nicholas 20 March 2012 (has links)
Compared to the history of science, spectroscopy at terahertz frequencies is a relatively recent development. Terahertz instruments were initially large and inefficient due to the characteristics of available technology. With progress in materials science and miniature circuit manufacturing techniques, we may fabricate micro-meter scale devices to generate and detect terahertz radiation. However, the complete spectroscope apparatus remains large due to the use of components such as lenses and mirrors designed in the far-field optical regime. A truly miniature terahertz spectroscope would be designed without lenses and mirrors to enable a wide range of inexpensive and pervasive applications in diverse fields such as medicine, materials identification, and security. We present detailed evaluation of some candidate structures for a quasi-optical device and design criteria for a quasi-TEM transmission-line based device. Quasi-TEM transmission lines are inherently broadband and therefore suited for use in a spectroscope. / Graduate
29

Ferroresonance simulation studies of transmission systems

Ang, Swee Peng January 2010 (has links)
The onset of a ferroresonance phenomenon in power systems is commonly caused by the reconfiguration of a circuit into the one consisting of capacitances in series and interacting with transformers. The reconfiguration can be due to switching operations of de-energisation or the occurrence of a fault. Sustained ferroresonance without immediate mitigation measures can cause the transformers to stay in a state of saturation leading to excessive flux migrating to transformer tanks via internal accessories. The symptom of such an event can be unwanted humming noises being generated but the real threatening implication is the possible overheating which can result in premature ageing and failures.The main objective of this thesis is to determine the accurate models for transformers, transmission lines, circuit breakers and cables under transient studies, particularly for ferroresonance. The modeling accuracy is validated on a particular 400/275 kV transmission system by comparing the field test recorded voltage and current waveforms with the simulation results obtained using the models. In addition, a second case study involving another 400/275 kV transmission system with two transformers is performed to investigate the likelihood of the occurrence of sustained fundamental frequency ferroresonance mode and a possible quenching mechanism using the 13 kV tertiary connected reactor. A sensitivity study on transmission line lengths was also carriedout to determine the probability function of occurrence of various ferroresonance modes. To reproduce the sustained fundamental and the subharmonic ferroresonance modes, the simulation studies revealed that three main power system components which are involved in ferroresonance, i.e. the circuit breaker, the transmission line and the transformer, can be modeled using time-controlled switch, the PI, Bergeron or Marti line model, and the BCTRAN+ or HYBRID transformer model. Any combination of the above component models can be employed to accurately simulate the ferroresonance system circuit. Simulation studies also revealed that the key circuit parameter to initiate transformer ferroresonance in a transmission system is the circuit-to-circuit capacitance of a double-circuit overhead line. The extensive simulation studies also suggested that the ferroresonance phenomena are far more complex and sensitive to the minor changes of system parameters and circuit breaker operations. Adding with the non-linearity of transformer core characteristics, repeatability is not always guaranteed for simulation and experimental studies. All simulation studies are carried out using an electromagnetic transient program, called ATPDraw.
30

Soil and Site Characterization Using Electromagnetic Waves

Liu, Ning 08 May 2007 (has links)
Success in geotechnical analysis, design, and construction invariably requires that we have proper knowledge and understanding of (1) the strength, (2) the fluid flow properties, and (3) the stress-deformation behavior of the earth materials. These important engineering properties are primarily determined by the components and structure of a soil, which also dictate the soil's responses in an electromagnetic field. As a nondestructive technique, the electromagnetic property measurement offers a promising approach to characterize earth materials and identify the effects of changes in environments. However, despite many investigations in the last several decades, the relationship between the frequency-dependent electromagnetic properties of soils and their components and structure are still not well understood. Hence, estimation of engineering properties of a soil in a quantitative way from electromagnetic measurements can be uncertain. In this research several tasks have been accomplished: (1) Development of a physically based model that provides a means of investigating the coupled effects of important polarization mechanisms on soil electromagnetic properties, and a means of relating the electromagnetic properties of a soil to its fines content, clay mineralogy, anisotropy, degree of flocculation and pore fluid chemistry; (2) Proposal of a practically applicable method to determine the volumetric water content, specific surface area and pore fluid salt concentration simultaneously from the dielectric spectrum; (3) Deduction of the wide-frequency electromagnetic properties of a soil by measuring its responses to a step pulse voltage using time domain reflectometry (TDR); (4) Establishment of the relationships between the specific surface area and compressibility, residual shear strength and hydraulic conductivity. This study establishes a framework for quantifying soil engineering properties from their electromagnetic properties. If properly determined and interpreted, the electromagnetic properties can also provide insights into the causes of soil property changes over time and can be very useful in studying the effects of biological factors in geotechnical engineering, a field that may offer great potential for future advances. / Ph. D.

Page generated in 0.0651 seconds