• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transparent Antennas for Solar Cell Integration

Yasin, Tursunjan 01 August 2013 (has links)
Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.
2

Conformal Inkjet Printed Antennas for Small Spacecraft

Tursunniyaz, Muhammadeziz 01 August 2018 (has links)
Although small spacecraft are small in size and light in weight compared to the conventional satellites, they can offer lots of possibilities for space exploration, scientific observation, data collection and telecommunication. Also, they cost a lot less money than the conventional satellites, and the scientific missions can be planned in a relatively short period of time by using the COTS (Commercial Off-The-Shelf) materials. However, there is a big challenge for the small spacecraft that is the limited surface area of the small spacecraft and the outnumbered components to be mounted on the surface of the small spacecraft. The most obvious one is that the competition for the limited real estate between the antenna and solar cells. UAVs, also known as drones, have become so popular that it is not only used for military and scientific applications, but also they are available for recreational use for ordinary people. Although they are getting smaller in size so that one can put them in his pocket or on his palm, they are becoming multifunctional, which requires more sensors to be mounted on the surface of the drone to achieve its multifunctionality. For example, a recreational drone can not only take pictures and videos, but also it can transmit the picture or video in real time to the operator, which needs a camera to take the picture or videos and needs an antenna to transmit the recorded data to the operator. This requires that the limited surface area needs to be efficiently used in order to accommodate the multiple needed components. This thesis presented a faster, better and cheaper way of inkjet printing conformal antennas on the cover glass of the solar cells of the small spacecraft or on the wing or other parts of the UAV body to integrate the antenna with the solar panels of the CubeSats or with or directly printing the antenna on the UAV body to efficiently use the limited real estate. Several meshed and solid patch antennas printed on a space certified AF32 glass substrate using the printing procedure outlined in this thesis and measured to verify the effectiveness of the inkjet printing procedures. A high gain reflectarray with optical transparency of 95% was inkjet printed on space certified AF32 glass and BOROFLOAT glass and measured to verify the antenna performance and solar panel efficiency. Measurement results showed that the inkjet printed reflectarray integrated on top of the solar panel has a gain of 21.5 dB. The solar panel efficiency was dropped by around 6% due to the inkjet printed reflectarray on glass. A simple conformal dual-band antenna for UAV application was designed with ANSYS HFSS and fabricated in the lab using a foam substrate. The measured antenna performances agreed well with the simulation results. This dual-band antenna also can be inkjet printed directly on the wing or other parts of the UAVs using the printing techniques discussed in this thesis.
3

Conception et étude d'antennes actives optiquement transparentes : de la VHF jusqu'au millimétrique / Conception and study of optically transparent and active antennas : from VHF to millimeter wave

Martin, Alexis 23 October 2017 (has links)
Avec le développement de l’internet des objets et l’augmentation des applications sans fil, les antennes sont de plus en plus présentes au quotidien. Cependant, l’implantation de ces antennes est un challenge tant d’un point de vue technologique (intégration des antennes dans les dispositifs), que psychologique (acceptabilité des antennes par le grand public). Dans ce contexte, le développement d’antennes optiquement transparentes permet non seulement leur implantation sur de nouvelles surfaces (vitrages d’immeubles, écrans de smartphones ...), mais promeut aussi leur acceptabilité par le grand public grâce à leur faible impact visuel. Ce travail présente la conception, la fabrication et la caractérisation d’antennes actives optiquement transparentes. Le matériau transparent et conducteur utilisé est un maillage métallique à pas micrométrique développé spécifiquement, alliant conductivité électrique et transparence optique élevées. Dans ce cadre, un premier prototype d’antenne transparente et miniature en bande FM utilisant un transistor MESFET de dimensions sub-millimétriques a été réalisé. Des antennes agiles en fréquence en bande X (~10 GHz) couplées, soit à une diode varicap localisée (agilité ~10%), soit à un matériau ferroélectrique (agilité ~2%), ont été développées et étudiées. Une antenne passive transparente a été conçue en bande V (~60 GHz). Enfin, une transition optique (1540 nm) / hyperfréquence (1,4 GHz) a été réalisée et caractérisée, basée sur la transmission optique d’un faisceau laser au travers du matériau constitutif de l’antenne. Pour l’ensemble des prototypes réalisés, une transparence optique supérieure à 80% dans le domaine du visible associée à une résistance par carré inférieure à 0,1 ohm/sq ont été utilisées. / Within the development of the Internet of Things (IoT) and the increase of the wireless communications, antennas are even more present on everyday life. However, antenna implementation is a real challenge, from a technological point of view (antenna integration into the devices) and from a psychological point of view (acceptability by the general public). Within this framework, the development of optically transparent antennas on new surfaces (glass windows, smartphone screens . . . ) is of great interest to improve the network coverage and to assist the general public in acceptability thanks to the low visual impact of such printed antennas. The present work deals with the design, the fabrication and the characterization of optically transparent and active antennas. The transparent and conducting material used is a micrometric mesh metal film specifically developed, associating high electrical conductivity and high optical transparency. A first optically transparent and miniature FM antenna based on a MESFET transistor with micrometric size has been designed and fabricated. Frequency agile antennas operating in X-band (~10 GHz), based on a beam-lead varactor (agility ~10%) and on a ferroelectric material agility ~2%), have been developed and characterized. An optically transparent and passive antenna has been studied in V-band (~60 GHz). At last, optics (1540 nm) / microwave (1.4 GHz) transition has been performed based on the transmission of a laser beam through the transparent antenna. For all prototypes, an optical transparency level higher than 80% coupled with a sheet resistance value lower than 0.1 ohm/sq have been used.

Page generated in 0.0866 seconds