• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transparent solar cell techniques : From a solar irradiance- and environmental perspective

Nilsson, Andreas January 2017 (has links)
The task of this master thesis was to investigate the possibility of using transparent solar panels as windows and how they compare to other solar energy technologies. The idea is then to use the UV and IR light to produce energy while letting the visual light pass through. With this also receiving the advantage of less indoor heating of the building and therefore a decreased need for cooling. To make it into a more concrete example the Sergelhuset building in Stockholm, Sweden was chosen as an example. The investigation was made through a solar irradiation simulation for four different cases and an environmental analysis of the alternatives. The result is that the most common way of mounting polycrystalline modules, is the most cost effective alternative but it might not be so good from an environmental perspective in Sweden because of the already low g CO2eq/kWh and not the best location for solar panels. Façade mounted CIGS perform well in energy production but the high investment costs set it down. However, it is better than polycrystalline panels from an environmental perspective. The semitransparent CdTe window will be hard to make economically viable and from an environmental perspective it is debatable. The transparent alternatives focus its absorption on UV and IR light but there are also semi-transparent alternatives that uses also part of the visible light, which makes it not completely transparent.

Page generated in 0.0871 seconds