• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamentals of transport in poly(ethylene terephthalate) and poly(ethylene furanoate) barrier materials

Burgess, Steven K. 27 May 2016 (has links)
The increasing use of polymeric materials in food packaging applications is due to many factors; however, most are related to cost. While poly(ethylene terephthalate) (PET) is currently the industry standard for soft-drink bottles, more stringent requirements on the barrier properties to oxygen are needed for PET to expand further into more demanding markets (i.e., juice, etc). The current work examines the fundamental oxygen and carbon dioxide permeation and sorption properties of amorphous, caffeine antiplasticized PET and amorphous poly(ethylene furanoate) (PEF), which is a new biologically sourced polyester that exhibits significantly enhanced performance compared to petroleum-sourced PET. The fundamental transport data reported herein at 35°C illustrate that amorphous PEF exhibits significant reductions in permeability for oxygen (11X), carbon dioxide (19X), and water (2X) compared to amorphous PET. Such impressive barrier enhancements are unexpected since PEF exhibits a higher free volume compared to PET. Further investigation into the fundamental chain motional processes which contribute to penetrant diffusion, as probed via dynamic mechanical and solid-state NMR methods, reveals that the polymer ring-flipping motions in PEF are largely suppressed compared to those for PET. Such behavior allows for rationalization of the reduced transport properties compared to PET. Additional characterization techniques (i.e., thermal, mechanical, density, etc.) are used to develop a more complete understanding of PEF and caffeine antiplasticized PET, with the ultimate goal of relating these properties to penetrant transport.

Page generated in 0.0915 seconds