Spelling suggestions: "subject:"cotransport none local"" "subject:"cotransport noun local""
1 |
Transport électronique non local dans des structures hybrides supracondctricesDuhot, Sylvie 03 October 2008 (has links) (PDF)
Dans cette thèse, nous traitons quatre sujets relatifs aux structures hybrides contenant un supraconducteur. <br />Le premier chapitre analyse le transport non local dans une structure métal normal – supraconducteur – métal normal (N-S-N). Nous considérons un modèle unidimensionnel pour les jonctions N-S-N soit à l'aide de la méthode de Blonder-Tinkham-Klapwijk soit à l'aide des techniques des fonctions de Green. Nous trouvons que le transport non local est amplifié par les processus d'interactions multiples dans les électrodes normales, comme pour le phénomène de “reflectionless tunnelling”. <br />Dans le second chapitre, nous considérons un SQUID à l'échelle nanoscopique formé d'un nanotube de carbone couplé à des électrodes supraconductrices. Les processus non locaux <br />diminuent le courant critique et introduisent des fluctuations d'échantillon à échantillon dans la relation courant-phase en fonction des paramètres du modèle. <br />Dans le troisième chapitre, nous étudions les corrélations des fluctuations de courant dans des structures supraconductrices multiterminales à l'aide de la théorie semiclassique de Boltzmann-Langevin. Les réflexions d'Andreev multiples peuvent donner un changement de signe dans les corrélations croisées pour certains paramètres. <br />Dans le dernier chapitre, nous analysons des systèmes hybrides avec des supraconducteurs et des ondes de densité de charge (ODC). Nous trouvons que les paires de Cooper ne peuvent pénétrer dans les ODC que sur la longueur d'onde de Fermi. Ainsi, les jonctions S-ODC-S ne peuvent pas transporter de supercourant.
|
2 |
Development of a fluid code for tokamak edge plasma simulation. Investigation on non-local transport / Non-localités dans le transport et implémentation dans les codes fluides de simulation du plasma de bordBufferand, Hugo 28 November 2012 (has links)
Pour concevoir les futurs réacteurs à fusion nucléaire, une bonne compréhension des mécanismes régissant l'intéraction plasma-paroi est requise. En particulier, il est nécessaire d'estimer quantitativement les flux de chaleurs impactant les matériaux et la contamination du coeur par les impuretés provenant du mur. Dans ce contexte, le code fluide SolEdge2D a été développé pour simuler le transport dans le plasma de bord. L'interaction plasma-paroi est prise en compte grâce à une méthode de pénalisation innovante et originale. Cette méthode permet en particulier de modéliser la géométrie complexe des éléments face au plasma avec une grande flexibilité. En parallèle, une étude plus théorique sur les propriétés du transport dans les milieux faiblement collisionels a été conduite avec les physiciens du groupe CSDC de l'université de Florence. Une généralisation de la loi de Fourier prenant en compte les corrélation spatio-temporelle à longue distance à été obtenue par l'analyse de modèles stochastiques 1D. Cette loi retrouve en particulier la transition entre un régime diffusif à forte collisionalté et un régime balistique à faible collisionalité. / In the scope of designing future nuclear fusion reactors, a clear understanding of the plasma-wall interaction is mandatory. Indeed, a predictive estimation of heat flux impacting the surface and the subsequent emission of impurities from the wall is necessary to ensure material integrity and energy confinement performances. In that perspective, the fluid code SolEdge2D has been developed to simulate plasma transport in the tokamak edge plasma. The plasma-wall interaction is modeled using an innovative penalization technique. This method enables in particular to take complex plasma facing components geometry into account. In parallel to this numerical effort, a theoretical work has been achieved to find appropriate corrections to fluid closures when collisionality drops. The study of stochastic 1D models has been realized in collaboration with physicists from the CSDC group in Florence. A generalized Fourier law taking long range spatio-temporal correlations has been found to properly account for ballistic transport in the low collisional regime. This formulation is expected to be used to model parallel heat flux or turbulent cross-field transport in tokamak plasmas.
|
3 |
Vers une électronique de spin cohérente de phase à base de nanotubes de carboneFeuillet-Palma, Chéryl 28 May 2010 (has links) (PDF)
Cette thèse se place dans le cadre de la physique mésoscopique et a pour objet l'étude du transport électronique polarisé en spin dans les nanotubes de carbone mono-parois. L'existence d'un déséquilibre entre les populations d'électrons de spin up et ceux de spin down lors de leur diffusion à l'interface entre un métal ferromagnétique et un métal non- magnétique est au coeur du principe de fonctionnement des jonctions tunnel magnétiques et des multi-couches bien connues dans le domaine de l'électronique de spin. Bien que le degré de liberté de spin et l'effet tunnel des électrons soient utilisés dans ces dispositifs, aucun d'entre eux ne tient compte du degré de liberté de phase orbitale de la fonction d'onde électronique. Dans la plupart des dispositifs étudiés jusqu'à présent, cet aspect n'a pas été développé en raison du régime de transport semi-classique des porteurs de charge dans les conducteurs considérés. Dans ce travail, nous étudions des mesures de transport dépendantes du spin dans des circuits à plusieurs réservoirs à base de nanotubes de carbone. Nous observons la présence d'un signal de spin dans la tension non-locale et d'un signal de spin anormale dans la conductance. Ces signaux de spin sont contrôlables par le tension de grille appliquée et ils révèlent qu'à la fois le degré de liberté de phase orbitale et le degré de spin sont conservés dans un nanotube de carbone connecté à plusieurs réservoirs ferromagnétiques. Nous montrons également l'existence d'un phénomène étonnant qui n'a aucun analogue classique et qui est la conséquence de la cohérence de phase orbitale : la présence d'un comportement de type transistor de spin à effet de champ entre les deux contacts normaux avec à proximité deux contacts férromagnétiques en dehors du chemin classique des électrons. Ceci est la réalisation de l'expérience de tête de théoricien pour l'électronique de spin. Nos observations ouvrent la voix pour des dispositifs de l'électronique de spin exploitant ces deux degré de liberté quantique sur le même plan.
|
Page generated in 0.0863 seconds