Spelling suggestions: "subject:"transversalité dde whom"" "subject:"transversalité dde hom""
1 |
Analyse de problèmes inverses et directs en théorie du contrôle / Analysis of inverse and direct problems in control theoryLagache, Marc-Aurèle 19 October 2017 (has links)
Le contexte général de cette thèse est l’étude de problèmes inverses et directs en théorie du contrôle. Plus précisément, les trois problèmes étudiés sont les suivants.Le premier est un problème de contrôle optimal (approche directe). Il s’agit de fournir la synthèse temps minimum du modèle cinématique d'un drone volant à altitude constante, de vitesse linéaire non nécessairement constante voulant rejoindre une trajectoire circulaire de rayon de courbure minimum.Le deuxième problème concerne une approche inverse du contrôle optimal. Il s’agit d’élaborer des méthodes théoriques de reconstruction du critère optimisé dans un problème de contrôle optimal à partir d’un ensemble de solutions à ce problème, ainsi que caractériser les "bons" ensembles de trajectoires permettant la reconstruction du critère. Le contrôle optimal inverse connait un regain d’intérêt depuis une quinzaine d’années, en particulier dans l’étude des comportements moteurs humains. En effet, selon un paradigme largement accepté en neurophysiologie, parmi tous les mouvements possibles ceux effectivement réalisés sont solutions d’un processus d’optimisation.Le troisième problème traite de stabilisation par retour de sortie. Nous analysons, à travers un exemple académique tiré du contrôle quantique, le problème de stabilisation par retour de sortie (à l’aide d’un observateur) lorsque le point où l'on souhaite stabiliser le système correspond à un contrôle qui rend le système inobservable. L’idée générale est de perturber le retour d’état stabilisant afin de garantir l’observabilité du système tout en stabilisant le système sur la cible. L’analyse de cet exemple académique nous permet dans un second temps de dégager une méthode générale pouvant s’appliquer à une classe de système beaucoup plus large. / The overall context of this thesis is the study of inverse and direct problems in control theory. More specifically, the following three problems are studied.The first one is an optimal control problem (direct approach). The aim is to give a time minimum systhesis fora kinematic model of a UAV flying at constant altitude with positive (non-necessarily constant) linear velocityin order to steer it to a fixed circle of minimum turning radius.The second problem deals with an inverse approach of optimal control. The aim is to develop theoretical methods in order to reconstruct the minimized criterion in an optimal control problem from a set of solution to this problem. The aim is also to characterize the « good » sets of trajectories leading to the reconstruction of the criterion. In the last fifteen years, there has been a renewed interest in inverse optimal control, especially inhuman motor behavior. Indeed, according to a well accepted paradigm in neurophysiology, among all possible movements, those actually accomplished are solutions of an optimization process.The third problem tackles output feedback stabilization. We analyze, via a simple academic example from quantum control, the problem of dynamic output feedback stabilization, when the point where we want to stabilize corresponds to a control value that makes the system unobservable. The general idea is to perturb the stabilizing state feedback in order to ensure the observability of the system while stabilizing it to the target.The analysis of this example allows, secondly, to identify a general procedure that can be applied to a widerclass of systems.
|
2 |
Théorie KAM faible et instabilité pour familles d'hamiltoniensMandorino, Vito 11 March 2013 (has links) (PDF)
Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé 'polysystème'. Motivés par des questions liées au phénomène de la diffusion d'Arnold, notre objectif est de construire des trajectoires du polysystème qui relient deux régions lointaines de l'espace des phases. La thèse est divisée en trois parties.Dans la première partie, nous considérons le polysystème engendré par les flots discrétisés d'une famille d'Hamiltoniens Tonelli. En utilisant une approche variationnelle issue de la théorie KAM faible, nous donnons des conditions suffisantes pour l'existence des trajectoires souhaitées.Dans la deuxième partie, nous traitons le cas d'un polysystème engendré par un couple de flots Hamiltoniens à temps continu, dont l'étude rentre dans le cadre de la théorie géométrique du contrôle. Dans ce contexte, nous montrons dans certains cas la transitivité d'un polysystème générique, à l'aide du théorème de transversalité de Thom.La dernière partie de la thèse est dédiée à obtenir une nouvelle version du théorème de transversalité de Thom s'exprimant en termes d'ensembles rectifiables de codimension positive. Dans cette partie il n'est pas question de polysystèmes, ni d'Hamiltoniens. Néanmoins, les résultats obtenus ici sont utilisés dans la deuxième partie de la thèse
|
3 |
Théorie KAM faible et instabilité pour familles d'hamiltoniens / Weak KAM theory and instability for families of HamiltoniansMandorino, Vito 11 March 2013 (has links)
Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé ‘polysystème’. Motivés par des questions liées au phénomène de la diffusion d’Arnold, notre objectif est de construire des trajectoires du polysystème qui relient deux régions lointaines de l’espace des phases. La thèse est divisée en trois parties.Dans la première partie, nous considérons le polysystème engendré par les flots discrétisés d’une famille d’Hamiltoniens Tonelli. En utilisant une approche variationnelle issue de la théorie KAM faible, nous donnons des conditions suffisantes pour l’existence des trajectoires souhaitées.Dans la deuxième partie, nous traitons le cas d’un polysystème engendré par un couple de flots Hamiltoniens à temps continu, dont l’étude rentre dans le cadre de la théorie géométrique du contrôle. Dans ce contexte, nous montrons dans certains cas la transitivité d’un polysystème générique, à l’aide du théorème de transversalité de Thom.La dernière partie de la thèse est dédiée à obtenir une nouvelle version du théorème de transversalité de Thom s’exprimant en termes d’ensembles rectifiables de codimension positive. Dans cette partie il n’est pas question de polysystèmes, ni d’Hamiltoniens. Néanmoins, les résultats obtenus ici sont utilisés dans la deuxième partie de la thèse / In this thesis we study the dynamics generated by a family of Hamiltonian flows. Such a dynamical system with several generators is also called ‘polysystem’.Motivated by some questions related to the phenomenon of Arnold diffusion, our aim is to construct trajectories of the polysystem which connect two far-apart regions of the phase space.The thesis is divided into three parts.In the first part, we consider the polysystem generated by the time-onemaps of a family of Tonelli Hamiltonians. By using a variational approach falling within the framework of weak KAM theory, we give sufficient conditions for the existence of the desired trajectories.In the second part, we address the case of a polysystem generated by twocontinuous-time Hamiltonian flows. This problem fits into the framework of geometriccontrol theory. In this context, we show in some cases the transitivity of a generic polysystem, by means of Thom’s transversality theorem.The third and last part of the thesis is devoted to the proof of a newversion of Thom’s transversality theorem, formulated in terms of rectifiable sets of positive codimension. Neither polysystems nor Hamiltonians are explicitly involved in this part. However, the results obtained here are used in the second part of the thesis.
|
Page generated in 0.0758 seconds