• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a One-Way Coupled Diffraction/Trapped Air Model for Predicting Wave Loading on Bridge Superstructure Under Water Wave Attack

Matemu, Christian Hillary 01 January 2018 (has links)
In recent years, a number of researchers have applied various computational methods to study wind wave and tsunami forcing on bridge superstructure problems. Usually, these computational analyses rely upon application of computational fluid dynamic (CFD) codes. While CFD models may provide reasonable results, their disadvantage is that they tend to be computationally expensive. During this study, an alternative computational method was explored in which a previously-developed diffraction model was combined with a previously-developed trapped air model under worst-case wave loading conditions (i.e. when the water surface was at the same elevation as the bottom bridge chord elevation). The governing equations were solved using a finite difference algorithm in MATLAB for the case where the bridge was impacted by a single wave in two dimensions. Resultant inertial and drag water forces were computed by integrating water pressure contacting the bridge superstructure in the horizontal and vertical directions, while resultant trapped air forces (high-frequency oscillatory forces or sometimes called “slamming forces” in the literature) were computed by integrating air pressure along the bottom of the bridge deck in the vertical direction. The trapped air model was also used to compute the buoyancy force on the bridge due to trapped air. Results were compared with data from experiments that were conducted at the University of Florida in 2009. Results were in good agreement when a length-scale coefficient associated with the trapped air model was properly calibrated. The computational time associated with the model was only approximately one hour per bridge configuration, which would appear to be a significant improvement when compared with other computational technique

Page generated in 0.0488 seconds