Spelling suggestions: "subject:"traumatic brain injury"" "subject:"traumatic brain jnjury""
151 |
Does Mental Status Moderate the Relationship Between Traumatic Brain Injury History and Life Satisfaction?Payne, Charlotte A 01 January 2019 (has links)
Traumatic brain injury (TBI) history has been linked to damaged cognition and poorer quality of life. While this link has been established, there is not much known about this relationship in older adult populations experiencing normal cognitive decline. In the current study, mental status was predicted to moderate the relationship between TBI history and life satisfaction among older adults. Additionally, details of the injury - years since injury and time spent unconscious - were expected to play a role in this relationship. Per analyses, there was no relationship found between TBI history, mental status, and life satisfaction. Moreover, there was no link found between time since injury, time spent unconscious, mental status and life satisfaction. While insignificant, these results yield important findings. The results lend support to more positive long-term outcomes for those with a history of TBI than initially expected, especially if the TBI was mild and resulted in no loss of consciousness or a loss of consciousness less than 5 hours.
|
152 |
Using Thermography to Monitor Inflammation as a Non-Invasive Supplementary Diagnostic Tool for Mild Traumatic Brain Injury in a Sprague Dawley Rat ModelJensen, Sonja Anne 08 December 2017 (has links)
Incurring high economic cost due to medical imaging modalities, there is a need for a low-cost, on site, diagnostic screening tool for the early detection of Traumatic Brain Injury (TBI). We hypothesize that patients with TBI will exhibit temporal and spatial gradient dynamics in the thermal signature on the surface of the skin, and that these dynamics reflect the inflammatory process. Hence, we implemented far-infrared (FIR) thermography using a blunt TBI rat model to analyze changes in the external, surface temperature gradient as an indication of internal inflammation. Results show a consistent increase in average surface temperature after 0.5 days of recovery post-impact. The trend in average surface temperature decreases after 1 day of recovery with a continual decline observed after a 4-day recovery. After 7 days of recovery, the average surface temperature begins to increase with a substantial surge seen 14 days post-impact. The trend appears to correlate well with the inflammatory process.
|
153 |
A multiscale modeling approach to investigate traumatic brain injuryBakhtiarydavijani, Amirhamed 09 August 2019 (has links)
In the current study, mechanoporation-related neuronal injury as a result of mechanical loading has been studied using a multiscale approach. Injurious mechanical loads to the head induce strains in the brain tissue at the macroscale. As each length scale has its own unique morphology and heterogeneities, the strains have been scaled down from the macroscale brain tissue to the nanoscale neuronal components that result in mechanoporation of the neuronal membrane, while relevant neuronal membrane mechanoporation-related damage criteria have been scaled up to the macroscale. To achieve this, first, damage evolution equations has been developed and calibrated to molecular dynamics simulations of a representative neuronal membrane at the nanoscale. These damage evolution equations are strain rate and strain state dependent. The resulting damage evolution model has been combined with Nernst-Planck diffusion equations to analytically compare to intracellular ion concentration disruption through mechanical loading of in vitro neuron cell culture and found to agree well. Then, these damage evolution equations have been scaled up to the microscale for dynamic simulations of 3-dimensional reconstructed neurons of similar mechanical loads. It was found that the neuronal orientation significantly affects average damage accumulation on the neuron, while the morphology of neurons, for a given neuron type, had little effect on the average damage accumulation. At the mesoscale, finite element simulations of geometrical complexities of sulci and gyri, and the structural complexities of the gray and white matter and CSF on stress localization were studied. It was found that the brain convolutions, sulci, and gyri, along with the effects of impedance mismatch between the cerebrospinal fluid (CSF) and brain tissue localized shear stresses, at the depths of the sulcus end (near field effects) and in-between sulci (far field effects), that correlated well with the regions of tau protein accumulation that is observed in chronic traumatic encephalopathy (CTE). Further, sulcus length and orientation, with respect to impending stress waves, had a significant impact on the magnitude of stress localization in the brain tissue. Lastly, gray-white matter differentiation, pia matter, and brain-CSF interface interaction properties had minimal impact of the shear stress localization trends observed in these simulations.
|
154 |
Structure-property relations in porcine brain tissue: strain rate and stress-state dependenceBegonia, Mark Gregory Tejada 08 August 2009 (has links)
Due to traumatic brain injury (TBI), numerous studies have focused on comprehensively determining the mechanical properties of the brain. This study examined the strain rate dependence of porcine brain under compression, and the microstructural damage was quantified using a confocal microscope and graphical user interface (GUI). The selected strain rates were 0.10 s-1, 0.025 s-1, and 0.00625 s-1 while the strain levels targeted for confocal imaging were 15%, 30%, and 40%. This study also characterized the stress-state dependence at a strain rate and strain level of 0.10 s-1 and 40%, respectively, under compression, tension, and shear. Strain rate dependency data exhibited viscoelastic behavior, and the analysis parameters correlated with increasing strain rate and strain level. Stress-state dependency data demonstrated distinct nonlinear behavior, and disparities were observed in the analysis parameters between different testing modes. Finite element procedures can implement this supplementary data for devising more realistic models.
|
155 |
Intensive Care Unit Nurse Judgments About Secondary Brain InjuryMcNett, Molly M. 14 March 2008 (has links)
No description available.
|
156 |
Correlation of assessment measures in a rehabilitation program for individuals with traumatic brain injuryLaske, Kate 27 April 2004 (has links)
No description available.
|
157 |
Assessment of Mild Traumatic Brain Injury by Advanced Practice Registered NursesGarey, Mary Lou 14 May 2014 (has links)
No description available.
|
158 |
Effects of Environmental Factors on Sleep Patterns in Traumatic Brain Injured Adults in the Rehabilitation SettingAmato, Shelly 30 April 2018 (has links)
No description available.
|
159 |
Identification of Critical Research and Intervention Needs in Pediatric Traumatic Brain Injury: Stakeholder Perceptions.Utz, Mackenzie 15 August 2018 (has links)
No description available.
|
160 |
Neural Substrates of Inhibitory and Socio-Emotional Processing in Adolescents with Traumatic Brain InjuryTlustos-Carter, Sarah 11 October 2011 (has links)
No description available.
|
Page generated in 0.088 seconds