• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 53
  • 35
  • 21
  • 21
  • 20
  • 16
  • 7
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 716
  • 716
  • 716
  • 117
  • 102
  • 94
  • 82
  • 70
  • 70
  • 70
  • 69
  • 66
  • 54
  • 51
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Klüver-Bucy Syndrome following traumatic brain injury: a systematic synthesis and review of pharmacological treatment from cases in adolescents and adults

Clay, F.J., Kuriakose, A., Lesche, D., Hicks, A.J., Zaman, Hadar, Azizi, E., Ponsford, J.L., Jayaram, M., Hopwood, M. 2018 October 1931 (has links)
Yes / Klüver-Bucy syndrome (KBS) is a rare clinical presentation following traumatic brain injury (TBI). Symptoms include visual agnosia, placidity, hyperorality, sexual hyperactivity, changes in dietary behavior, and hypermetamorphosis. The purpose of this article was to identify and synthesize the available evidence from case reports and case series on the treatment profile of KBS among adolescents and adults after TBI. Four bibliographic databases (MEDLINE OVID, EMBASE, PsycINFO, and SCOPUS) were searched for relevant literature. No date or language restrictions were applied. All case reports containing original data on KBS following TBI among adolescents and adults were included. Articles were evaluated, and data were extracted according to predefined criteria. The literature search identified 24 case reports of KBS post-TBI published between 1968 and 2017. Most case subjects were male (70.1%), and the mean age at injury was 25.1 years (range, 13–67 years). Injury to one or both temporal lobes occurred in most cases. Inappropriate sexual hyperactivity was the most common KBS symptom, followed by a change in dietary behavior and hyperorality. Visual agnosia was the least reported. In 50% of cases, the patient fully recovered from KBS. One-half of all participants described pharmacological management; the most common medication prescribed was carbamazepine. Overall, there was a lack of data available on pharmacotherapy initiation and duration. The complex presentation of KBS presents challenges in terms of treatment options. Although overall individuals who were prescribed carbamazepine had positive outcomes, given the reliance on case reports, it is difficult to make a definitive recommendation to guide clinical practice. / Institute for Safety, Compensation and Recovery Research, Monash University, Bionomics,Eli Lilly, Lundbeck, Novartis, Servier
172

Nonstandardized Assessment of Cognitive-Communication Abilities Following Pediatric Traumatic Brain Injury (pTBI): A Scoping Review

Hall, Audrey Rose January 2020 (has links)
No description available.
173

INVESTIGATION OF THE NEED FOR ACADEMICALLY ORIENTED COGNITIVE-LINGUISTIC REHABILITATION FOR COLLEGE-AGE INDIVIDUALS WITH TRAUMATIC BRAIN INJURY

GROVES, KATHY JEAN 11 October 2001 (has links)
No description available.
174

The Efficacy Of Online Traumatic Brain Injury Training For Pre-Service Educators

Gear, Brooks 09 August 2021 (has links)
No description available.
175

Analys av huvudets kinematik i ishockey : för situationer som inte ger hjärnskakningar / Analysis of head kinematics in ice hockey : For non-concussion situations

Saleh, Aso January 2015 (has links)
Rapporten innehåller analysen av 26 olika situationer inom ishockey. Situationerna är hårda tacklingar från olika matchar och ligor. Analyserade tacklingar resulterade INTE i hjärnskakning, likadana situationer kan ge upphov till hjärnskakning. Målet med projektet är bland annat skapa en kontrollgrupp för studierna i hjärnskakning inom ishockey. Tidigare studier utfördes för situationer som resulterar i hjärnskakningar. Rapporten pekar kort på huvudet och nackens anatomi d.v.s. skalp, hjärnan och skallben. Begreppet hjärnskakning med dess symptom förklarades också. I valda video sekvenserna analyserades huvudets kinematik och kollisionssekvenser mellan huvud och den andra parten som kan vara en annans axel, huvud, arm eller is eller glasvägg(plexiglas). Resultatet ska komma överens med tidigare gjorda arbete. / The report includes analysis of 15 different situations in Ice-hockey. The situations are hard tackles from different matches and leagues. The analyzed tackles did Not resulted to concussion, but similar situations can be concussions. The goal of the project includes creating a control group for the studies of concussions in ice-hockey. Previous or parallel studies have been down to situations that result to concussions. The report indicates short to head and neck anatomy that is scalp, brain and skull. The concept of concussion with its symptoms explained in this report. The selected video sequences were analyzed head kinematics and collision sequences between the head and the other part that may be another person's shoulder, head, arm or ice or glass wall. When the video sequences were analyzed attempted to controll the head speed, head acceleration and the tackles angle. The results should agree with previous works.
176

Mass Spectrometry-based Neuroproteomics : Deciphering the Human Brain Proteome

Musunuri, Sravani January 2016 (has links)
Mammalian brain is challenging to study due to its heterogeneity and complexity. However, recent advances in molecular imaging, genomics and proteomics have contributed significantly to achieve insights into molecular basis of brain function and pathogenesis of neurological disorders. Efficient sample preparation is an integral part of a successful mass spectrometry (MS)-based proteomics. Apart from the identification, quantification of proteins is needed to investigate the alterations between proteome profiles from different sample sets. Therefore, this thesis investigates optimizing and application of the MS compatible sample preparation techniques for the identification and quantification of proteins from brain tissue. The central objective of this thesis was (i) to improve the extraction of proteins as well as membrane proteins (MPs) from the brain tissue and (ii) to apply the optimized method along with the stable isotope dimethyl labeling (DML) and label-free (LF) MS approaches for the relative quantification of the brain proteome profiles during neurological conditions such as Alzheimer’s disease (AD) and traumatic brain injury (TBI).  First study described in this thesis is focused on the qualitative aspects for the brain tissue sample preparation. The optimized extraction buffers from first study containing n-octyl-β-glucopyranside or triton X-114 were used in the further quantitative studies to extract the proteins from patient (AD or TBI) and control human brain samples. Triton X-114 has additional advantage of separating MPs into a micellar phase. Therefore we also investigated the possibility to apply this in combination with DML quantitation approach for enrichment of low abundant MPs from AD brains. AD and TBI causes severe socio-economic burden on the society and therefore there is a need to develop diagnostic markers to detect the early changes in the pathology of the disease. Analytical tools and techniques applied and discussed in this thesis for neuroproteomics applications proved to be powerful and reliable for analyzing complex biological samples to generate high-throughput screening and unbiased identification and quantitation of disease-specific proteins that are of great importance in understanding the disease pathology.
177

Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor

Hellewell, Sarah, Yan, Edwin, Alwis, Dasuni, Bye, Nicole, Morganti-Kossmann, M. January 2013 (has links)
BACKGROUND:Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia.METHODS:Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30minutes of hypoxic (Hx, 12% O2) or normoxic ventilation, and were administered recombinant human EPO-alpha (5000IU/kg) or saline at 1 and 24hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests / 2) axonal pathology (NF-200) / 3) callosal degradation (hematoxylin and eosin stain) / 3) dendritic loss (MAP2) / 4) expression and localisation of the EPO receptor (EpoR) / 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1beta.RESULTS:EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI+Hx). A single dose of EPO at 1hour reduced axonal damage in the white matter of TAI+Hx rats at 1day by 60% compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI+Hx rats / however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1day after TAI+Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1beta to sham levels 2hours after TAI+Hx, concomitant to a decrease in CD68 positive cells at 7 and 14days.CONCLUSIONS:When administered EPO, TAI+Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. These data provide compelling evidence of EPO's neuroprotective capability. Few benefits were observed when EPO was administered to TAI rats without hypoxia, indicating that EPO's neuroprotective capacity is bolstered under hypoxic conditions, which may be an important consideration when EPO is employed for neuroprotection in the clinic.
178

Heat loss from the upper airways and through the skull : studies of direct brain cooling in humans

Harris, Bridget A. January 2010 (has links)
Increased temperature is common after brain trauma and stroke, considered to be detrimental to outcome and usually treated with systemic cooling interventions. However, targeting cooling interventions at the head may be more logical. In addition to arterial blood, the human brain is cooled by heat loss through the skull and heat loss from the upper airways. It is these two mechanisms of heat loss which are the subject of this thesis. The initial research aim was to find out if restoring ‘normal’ airflow through the upper respiratory tracts of intubated, brain-injured patients could reduce brain temperature. Air at room temperature and humidity replicating normal resting minute volume was continuously administered nasally to 15 such patients. After a 30 minute baseline, they were randomised to receive airflow or no airflow for 6 hours and then crossed over for a further 6 hours. The airflow did not produce significant reductions in intracranial temperature (Mean -0.13 °C, SD 0.55 °C, 95% CI -0.43 to 0.17 °C). However, some evidence of heat loss through the skull was serendipitously observed. This was investigated formally in a randomised factorial trial, together with nasal airflow with enhancements (unhumidified air at twice minute volume with 20 ppm nitric oxide gas) intended to overcome some of the possible reasons for the neutral results with ‘normal’ airflow. After a 30 minute baseline, 12 intubated, brain-injured patients received enhanced nasal airflow, bilateral head fanning (8 m/s), both together and no intervention in randomised order. Each intervention was delivered for 30 minutes followed by 30 minutes washout. Mean brain temperature was reduced by 0.15 °C with nasal airflow (p=0.001, 95% CI 0.06 to 0.23 °C) and 0.26 °C with head fanning (p<0.001, 95% CI 0.17 to 0.34 °C). The estimate of the combined effect of airflow and fanning on brain temperature was 0.41 °C. Physiologically, this study demonstrated that heat loss through the upper airways and through the skull can reduce parenchymal brain temperature in brain-injured humans, that the effects are additive and the onset of temperature reduction is rapid. The most promising mechanism appeared to be heat loss through the skull and the final piece of research involved developing and initial (phase I) assessment of a convective head cooling device in healthy volunteers, with intracranial temperature measured non-invasively by magnetic resonance spectroscopy. After a 10 minute baseline, five healthy volunteers received 30 minutes head cooling followed by 30 minutes head and neck cooling via a hood and neck collar delivering 14.5 °C air at 42.5 L/s. The net brain temperature reduction with head cooling was 0.45 °C (SD 0.23 °C, p=0.01, 95% CI 0.17 to 0.74 °C) and with head and neck cooling 0.37 °C (SD 0.30 °C, p=0.049, 95% CI 0.00 to 0.74 °C). There was no significant reduction in cooling with progressive depth into the brain i.e. core brain was cooled. The main relevance of this research is physiological because it adds to knowledge and understanding of mechanisms of heat loss from the upper airways and through the skull in humans. Clinically, factors which enhance or inhibit these mechanisms may have an effect on brain temperature but the therapeutic relevance of head cooling by these methods requires further research.
179

HISTOLOGICAL AND BEHAVIORAL CONSEQUENCES OF REPEATED MILD TRAUMATIC BRAIN INJURY IN MICE

Bolton Hall, Amanda Nicholle 01 January 2016 (has links)
The majority of the estimated three million traumatic brain injuries that occur each year are classified as “mild” and do not require surgical intervention. However, debilitating symptoms such as difficulties focusing on tasks, anxiety, depression, and visual deficits can persist chronically after a mild traumatic brain injury (TBI) even if an individual appears “fine”. These symptoms have been observed to worsen or be prolonged when an individual has suffered multiple mild TBIs. To test the hypothesis that increasing the amount of time between head injuries can reduce the histopathological and behavioral consequences of repeated mild TBI, a mouse model of closed head injury (CHI) was developed. A pneumatically controlled device with a silicone tip was used to deliver a diffuse, midline impact directly onto the mouse skull. A 2.0mm intended depth of injury caused a brief period of apnea and increased righting reflex response with minimal astrogliosis and axonal injury bilaterally in the entorhinal cortex, optic tract, and cerebellum. When five CHIs were repeated at 24h inter-injury intervals, astrogliosis was exacerbated acutely in the hippocampus and entorhinal cortex compared to a single mild TBI. Additionally, in the entorhinal cortex, hemorrhagic lesions developed along with increased neurodegeneration and microgliosis. Axonal injury was observed bilaterally in the white matter tracts of the cerebellum and brainstem. When the inter-injury interval was extended to 48h, the extent of inflammation and cell death was similar to that caused by a single CHI suggesting that, in our mouse model, extending the inter-injury interval from 24h to 48h reduced the acute effects of repeated head injuries. The behavioral consequences of repeated CHI at 24h or 48h inter-injury intervals were evaluated in a ten week longitudinal study followed by histological analyses. Five CHI repeated at 24h inter-injury intervals produced motor and cognitive deficits that persisted throughout the ten week study period. Based upon histological analyses, the acute inflammation, axonal injury, and cell death observed acutely in the entorhinal cortex had resolved by ten weeks after injury. However, axonal degeneration and gliosis were present in the optic tract, optic nerve, and corticospinal tract. Extending the inter-injury interval to 48h did not significantly reduce motor and cognitive deficits, nor did it protect against chronic microgliosis and neurodegeneration in the visual pathway. Together these data suggested that some white matter areas may be more susceptible to our model of repeated mild TBI causing persistent neuropathology and behavioral deficits which were not substantially reduced with a 48h inter-injury interval. In many forms of TBI, microgliosis persists chronically and is believed to contribute to the cascade of neurodegeneration. To test the hypothesis that post-traumatic microgliosis contributes to mild TBI-related neuropathology, mice deficient in the growth factor progranulin (Grn-/-) received repeated CHI and were compared to wildtype, C57BL/6 mice. Penetrating head injury was previously reported to amplify the acute microglial response in Grn-/- mice. In our studies, repeated CHI induced an increased microglial response in Grn-/- mice compared to C57BL/6 mice at 48h, 7d, and 7mo after injury. However, no differences were observed between Grn-/- and WT mice with respect to their behavioral responses or amount of axonal injury or ongoing neurodegeneration at 7 months despite the robust differences in microgliosis. Dietary administration of ibuprofen initiated after the first injury reduced microglial activation within the optic tract of WT mice 7d after repeated mild TBI. However, a two week ibuprofen treatment regimen failed to affect the extent of behavioral dysfunction over 7mo or decrease chronic neurodegeneration, axon loss, or microgliosis in brain-injured Grn-.- mice when compared to standard diet. Together these studies underscore that mild TBIs, when repeated, can result in long lasting behavioral deficits accompanied by neurodegeneration within vulnerable brain regions. Our studies on the time interval between repeated head injuries suggest that a 48h inter-injury interval is within the window of mouse brain vulnerability to chronic motor and cognitive dysfunction and white matter injury. Data from our microglia modulation studies suggest that a chronically heightened microglial response following repeated mild TBI in progranulin deficient mice does not worsen chronic behavioral dysfunction or neurodegeneration. In addition, a two week ibuprofen treatment is not effective in reducing the microglial response, chronic behavioral dysfunction, or chronic neurodegeneration in progranulin deficient mice. Our data suggests that microglia are not a favorable target for the treatment of TBI.
180

ADRENOCORTICOSTEROID RECEPTOR EFFECTS ON HIPPOCAMPAL NEURON VIABILITY

McCullers, Deanna Lynn 01 January 2001 (has links)
Glucocorticoid activation of two types of adrenocorticosteroid receptors (ACRs), themineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), influences hippocampalneuron vulnerability to injury. Excessive activation of GR may compromise hippocampalneuron survival after several types of challenge including ischemic, metabolic, and excitotoxicinsults. In contrast, MR prevents adrenalectomy-induced loss of granule neurons in the dentategyrus. The present thesis addresses the respective roles of MR and GR in modulating neuronalsurvival following two forms of neuronal injury, excitotoxicity and traumatic brain injury. MaleSprague-Dawley rats were pretreated with MR antagonist spironolactone or GR antagonistmifepristone (RU486) and subsequently injected with kainic acid, an excitotoxic glutamateanalog, or injured with a controlled cortical impact. Twenty-four hours following injury,hippocampal neuron survival was measured to test the hypotheses that MR blockade wouldendanger and GR blockade would protect hippocampal neurons following injury. MessengerRNA levels of viability-related genes including bcl-2, bax, p53, BDNF, and NT-3 were alsomeasured to test the hypothesis that ACR regulation of these genes wouldcorrelate with neuronal survival. In addition, ACR mRNA levels were measured followingreceptor blockade and injury to test the hypothesis that glucocorticoid signaling is alteredfollowing neuronal injury via regulation of ACR expression.Mineralocorticoid receptor blockade with spironolactone increased neuronal vulnerability toexcitotoxic insult in hippocampal field CA3, and GR blockade with RU486 prevented neuronalloss after traumatic brain injury in field CA1. These results are consistent with the hypothesesthat MR protects and GR endangers hippocampal neurons. Adrenocorticosteroid receptorblockade decreased mRNA levels of the anti-apoptotic gene bcl-2 in select regions of uninjuredhippocampus, yet ACR regulation of bcl-2 did not consistently correspond with measures ofneuronal survival after injury. Kainic acid decreased MR mRNA levels in CA1 and CA3, whileboth kainic acid and controlled cortical impact dramatically decreased GR mRNA levels indentate gyrus. These data suggest that injury modulation of glucocorticoid signaling throughregulation of ACR expression may influence hippocampal neuron viability following injury.

Page generated in 0.0772 seconds