• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 50
  • 10
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 231
  • 101
  • 54
  • 32
  • 32
  • 29
  • 27
  • 27
  • 25
  • 24
  • 22
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Measurement of breath-by-breath oxygen consumption and carbon dioxide production in exercising calves

Creel, Earl E January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
52

Forward skating in ice hockey : comparison of EMG activation patterns of [sic] at three velocities using a skate treadmill

Goudreault, Robin. January 2002 (has links)
No description available.
53

Accuracy of Physical Activity Monitors in Pregnant Women

Connolly, Christopher P 01 May 2010 (has links)
Purpose: To determine the step count accuracy of three pedometers and one accelerometer in pregnant women during treadmill walking. Methods: Subjects were 30 women in the second or third trimester (20-36 weeks) who were screened for pregnancy-related risk factors. Each subject was fitted with a belt containing three physical activity monitors: Yamax Digiwalker SW-200 (DW), New Lifestyles NL 2000 (NL), and GT3X Actigraph accelerometer (ACT). The Omron HJ-720 (HJ) was placed in the pants pocket. Subjects walked at 54, 67, 80, and 94 m•min-1 for two minutes each. Actual steps were determined by an investigator using a hand-tally counter. Percentage of actual steps was calculated for each device at each speed and compared. Results: There was a significant interaction between speed and device (F9,20=7.574,P<0.001). At all speeds, the NL and HJ were most accurate. At 54 m•min-1, the DW was significantly less accurate (P<0.001) than all other devices and the ACT was significantly less accurate (P<0.001) than the NL and HJ. At 67 m•min-1, the ACT and DW were significantly less accurate (P<0.001) than the NL and HJ. At 80 m•min-1, the DW was significantly less accurate (P=0.024) than the NL and HJ. At 94 m•min-1, the ACT was significantly less accurate (P=0.001) than the NL and HJ. No significant differences were found at any speed for the NL (P=0.996) and HJ (P=0.298). Trimester did not significantly affect device accuracy. Conclusion: In pregnant women, the ACT and DW are less accurate than the NL and HJ. The HJ appeared to be the most accurate. These results can be useful in developing further research studies and physical activity programs that focus on walking during pregnancy.
54

The effects of treadmill training in hemi-parkinsonian rats

Poulton, Nadine P 30 August 2004
The purpose of this study was to investigate whether locomotor training, in the form of treadmill training, could ameliorate neurochemical changes and behavioural deficits in the 6-hydroxydopamine (6-OHDA) rat model of Parkinsons disease. It has been recently demonstrated that rehabilitative forelimb motor training can attenuate dopamine loss and some deficits in forelimb movements in this animal model. In addition, brief locomotor treadmill training has been shown to attenuate forelimb deficits in 6-OHDA treated rats. However, it is not known whether locomotor training could result in an amelioration of locomotor deficits in these animals. Rats were lesioned with 6-OHDA injected intracerebrally. Lesioned rats were randomly assigned to one of 3 groups: early treadmill trained, late treadmill trained and untrained. Animals in the treadmill groups were trained to trot on a moving treadmill for 2 x 20 minute sessions daily for 30 days, beginning either 24 hours or 7 days after 6-OHDA injection. Untrained animals were exposed to a stationary treadmill for the same time periods. All animals were assessed on their abilities to perform several behavioural tasks designed to test locomotor and forelimb movement abilities prior to 6-OHDA injection and again at 3 and 6 weeks post-injection. These tests included measurement of ground reaction forces during overground locomotion, paw placements during a ladder crossing task, forelimb useage during exploratory behaviour and ability to initiate forelimb stepping movements. In addition, assessments of dopamine depletion in the striatum were carried out first in vivo, by measuring apomorphine-induced rotations at 2 weeks post 6-OHDA injection, and subsequently by post-mortem analysis of dopamine levels in the striatum using HPLC at the conclusion of the study. Treadmill training resulted in attenuation of dopamine depletion compared to non-treadmill trained animals, as measured by both apomorphine injection and HPLC. However, treadmill training produced no difference in behavioural deficits on a variety of tests compared to untrained animals. In some cases, early treadmill trained animals tended to display more severe behavioural deficits compared to untrained animals. Late treadmill training had a similar but smaller effect compared to early treadmill training. We conclude that treadmill training does not ameliorate locomotor deficits, in the 6-OHDA model of Parkinsons disease, even though this same training results in attenuation of dopamine loss in the striatum.
55

The effects of treadmill training in hemi-parkinsonian rats

Poulton, Nadine P 30 August 2004 (has links)
The purpose of this study was to investigate whether locomotor training, in the form of treadmill training, could ameliorate neurochemical changes and behavioural deficits in the 6-hydroxydopamine (6-OHDA) rat model of Parkinsons disease. It has been recently demonstrated that rehabilitative forelimb motor training can attenuate dopamine loss and some deficits in forelimb movements in this animal model. In addition, brief locomotor treadmill training has been shown to attenuate forelimb deficits in 6-OHDA treated rats. However, it is not known whether locomotor training could result in an amelioration of locomotor deficits in these animals. Rats were lesioned with 6-OHDA injected intracerebrally. Lesioned rats were randomly assigned to one of 3 groups: early treadmill trained, late treadmill trained and untrained. Animals in the treadmill groups were trained to trot on a moving treadmill for 2 x 20 minute sessions daily for 30 days, beginning either 24 hours or 7 days after 6-OHDA injection. Untrained animals were exposed to a stationary treadmill for the same time periods. All animals were assessed on their abilities to perform several behavioural tasks designed to test locomotor and forelimb movement abilities prior to 6-OHDA injection and again at 3 and 6 weeks post-injection. These tests included measurement of ground reaction forces during overground locomotion, paw placements during a ladder crossing task, forelimb useage during exploratory behaviour and ability to initiate forelimb stepping movements. In addition, assessments of dopamine depletion in the striatum were carried out first in vivo, by measuring apomorphine-induced rotations at 2 weeks post 6-OHDA injection, and subsequently by post-mortem analysis of dopamine levels in the striatum using HPLC at the conclusion of the study. Treadmill training resulted in attenuation of dopamine depletion compared to non-treadmill trained animals, as measured by both apomorphine injection and HPLC. However, treadmill training produced no difference in behavioural deficits on a variety of tests compared to untrained animals. In some cases, early treadmill trained animals tended to display more severe behavioural deficits compared to untrained animals. Late treadmill training had a similar but smaller effect compared to early treadmill training. We conclude that treadmill training does not ameliorate locomotor deficits, in the 6-OHDA model of Parkinsons disease, even though this same training results in attenuation of dopamine loss in the striatum.
56

Constructing ground reaction force measurement platform for treadmill

Tsai, Tsung-ju 11 July 2011 (has links)
To identify the dynamic model of the treadmill, this study uses the piezoelectricity material (Po1yviny-lidene fluoride, PVDF) to measure the force under treadmill. With this dynamic model, the ground reaction force (GRF) can be derived from the PVDF sensors. The reliability and precision of the GRF results are verified by replacing the PVDF with the traditional load cell (Force measurement devices). To verify the accuracy of treadmill model, this study acquires three different types of GRF signals (marking time, walking and running) from ten subjects. For the marking time case, the correlation coefficients between the actual and predicated GRF signals are approximately 0.98. This study also demonstrates that the proposed model can provide sufficient bandwidth for the walking and running GRF signals. Finally, via comparing the average GRF profile, inter-personal differences of the GRF signal can be observed. Among the three tested locomotion patterns, the marking time GRF has the highest similarity whereas the running GRF signals has the largest variability.
57

Estimating the relation between vertical ground reaction force and heart rate during treadmill running

Kuo, Fu-Chang 20 July 2012 (has links)
Treadmill is a highly popular fitness equipments. One of the most important purposes of running is to consume redundant energy of the body. A well designed exercise intensity plan can achieve the benefits of exercise while avoiding sport injuries. Calculating the appropriate exercise intensity is therefore a valuable study issue. Current commercially available treadmills cannot provide sufficient physiological data. In particular, in order to measure the ground reaction force (GRF) of the runners, traditional approach is to design treadmill as a rigid body. Such treadmills are thus expensive and heavy. To estimate heart rate (HR), ECG measurement is typically required. However, sweat can cause the patch to loose and the quality of the signal transmission can also be degraded by environmental noises. Thus the aim of this work is to develop a simple and effective method to assess exercise intensity by estimating HR with GRF.. To achieve this goal, this work places load cells under the legs of the treadmill. By constructing the dynamic model of the treadmill via system identification technique, we can estimate the actual GRF from the measurements of the load cells. After computing the TVI (Total Vertical Impulse) index from the GRF, this work then investigates the linear relationship between TVI and running energy consumption by estimating HR from TVI. Based on the known relationship between HR and exercise intensity, we can observe the runner¡¦s condition from the speed of HR recovery and the HR time response during running. By means of linear regression method, it is found that the linear relations between TVI index and these HR measures are statistically significant. The p-value of such statically tests become even smaller when TVI index is normalized.
58

Accuracy of Physical Activity Monitors in Pregnant Women

Connolly, Christopher P 01 May 2010 (has links)
Purpose: To determine the step count accuracy of three pedometers and one accelerometer in pregnant women during treadmill walking. Methods: Subjects were 30 women in the second or third trimester (20-36 weeks) who were screened for pregnancy-related risk factors. Each subject was fitted with a belt containing three physical activity monitors: Yamax Digiwalker SW-200 (DW), New Lifestyles NL 2000 (NL), and GT3X Actigraph accelerometer (ACT). The Omron HJ-720 (HJ) was placed in the pants pocket. Subjects walked at 54, 67, 80, and 94 m•min-1 for two minutes each. Actual steps were determined by an investigator using a hand-tally counter. Percentage of actual steps was calculated for each device at each speed and compared. Results: There was a significant interaction between speed and device (F9,20=7.574,P<0.001). At all speeds, the NL and HJ were most accurate. At 54 m•min-1, the DW was significantly less accurate (P<0.001) than all other devices and the ACT was significantly less accurate (P<0.001) than the NL and HJ. At 67 m•min-1, the ACT and DW were significantly less accurate (P<0.001) than the NL and HJ. At 80 m•min-1, the DW was significantly less accurate (P=0.024) than the NL and HJ. At 94 m•min-1, the ACT was significantly less accurate (P=0.001) than the NL and HJ. No significant differences were found at any speed for the NL (P=0.996) and HJ (P=0.298). Trimester did not significantly affect device accuracy. Conclusion: In pregnant women, the ACT and DW are less accurate than the NL and HJ. The HJ appeared to be the most accurate. These results can be useful in developing further research studies and physical activity programs that focus on walking during pregnancy.
59

Plantar forces during forward ice hockey skating : comparison between ice and treadmill conditions

Loh, Jonathan James January 2003 (has links)
This study compared the plantar force distribution between forward ice hockey skating and treadmill skating. Four varsity hockey players from McGill University (age = 22.1 +/- 1.2 years, height = 1.8 +/- 0.1 m, mass = 82.2 +/- 8.6 kg) skated on ice surface and on a specialized treadmill at three velocities (22, 24 and 26 +/- 0.5 km/hr). Results showed higher plantar forces were seen during treadmill skating prior to push off and this discrepancy was due to consistently larger forces in the fore region of the foot. This phenomenon was speculated to be the result of differences in skate stability during ice and treadmill skating. With respect to the loading dynamics, the heel region was the same during ice and treadmill skating.
60

Biomechanics and Metabolic Costs of Overground and Treadmill Walking in Healthy Adults and in Stroke Subjects

PARVATANENI, KRISHNAJI 27 August 2009 (has links)
Background: Though numerous studies have compared overground and treadmill walking there still exists a significant debate about whether the two modes of walking are equivalent. The present study provides a comprehensive evaluation of overground and treadmill walking at matched speeds and increasing treadmill speeds. Walking performance was compared in healthy adults, in people with stroke and between the groups. This is important to know because any differences may have implications for gait training in both groups. Methods: Ten healthy adults (50-73 years) and ten subjects with stroke (54-80 years) walked at their self-selected speed overground which was matched on a treadmill. Temporal parameters, angular kinematics and vertical ground reaction forces were recorded during walking once subjects were in steady state as determined from their heart rate and oxygen uptake, both of which were also recorded. Belt speed was then increased 10% and 20% above matched speed and steady state recordings obtained. Speed related adjustments were also evaluated and compared between the two groups of subjects. Results: For healthy adults, step, stride, and joint angular kinematics were similar for both modes of walking. Small reductions in double support time and decreased push-off force were evident on the treadmill. For subjects with stroke, step, stride, and stance times were longer when walking overground but the degree of symmetry was comparable for both surfaces. Kinematic data revealed interlimb asymmetry was more pronounced for all lower limb joint excursions during overground walking and vertical forces were higher. In comparison to healthy adults, stroke subjects walked with lower cadence, shorter strides, lower stance time, and smaller lower limb joint excursions than their healthy counterparts. When compared with overground walking the metabolic requirements of treadmill walking for healthy adults and subjects with stroke however were about higher by 23% and 15% respectively. All temporal-distance parameters, hip joint excursion, F1 and F2 forces and metabolic costs showed main effects of speed. An interaction between speed and group indicated that oxygen consumption increased at a greater rate in stroke than healthy subjects. Conclusions: The findings suggest that, although overground and treadmill gait patterns are similar for each group of subjects, people with stroke adopt a more symmetrical kinematic walking pattern on the treadmill that is maintained at faster belt speeds. Although there are differences in gait patterns between healthy and stroke subjects, both groups respond to the challenge of increased walking speed in the same way. One important difference is the abnormal elevation of energy demands associated with treadmill walking at faster speeds in stroke. Clinically, this warrants consideration as it may lead to premature fatigue and undesirable cardiorespiratory challenge in this group of individuals. / Thesis (Ph.D, Rehabilitation Science) -- Queen's University, 2009-08-27 06:41:19.999

Page generated in 0.045 seconds