• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • Tagged with
  • 17
  • 17
  • 17
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Metodologia para avaliação dos benefícios clínicos e socioeconômicos do uso da técnica de IMRT em tumores da próstata

Nunes, Isabella Paziam Fernandes. January 2018 (has links)
Orientador: Marco Antônio Rodrigues Fernandes / Resumo: O presente estudo consiste na análise da viabilidade econômica e financeira da implantação da radioterapia de intensidade modulada (IMRT) no tratamento do câncer de próstata e comparar seus benefícios clínicos frente aos procedimentos similares custeados pelos sistemas de saúde públicos e privados. Para tanto, foram analisadas as distribuições de dose de radiação preconizadas nos planejamentos radioterápicos com as técnicas de radioterapia conformacional tridimensional (3D-CRT) e de intensidade modulada (IMRT), prescrita para 20 pacientes com câncer de próstata tratados em um serviço de radioterapia privado. Para verificação da qualidade da distribuição de dose de radiação no volume de tratamento, foram analisados os índices de homogeneidade (IH) e de conformidade (IC) de cada um dos planos radioterápicos estudados. Em comparação com a técnica 3D-CRT, a técnica de IMRT permitiu uma melhor cobertura e conformação da dose prescrita no volume alvo de planejamento (PTV), porém distribuída de forma mais heterogênea. Além disso, avaliou-se os custos financeiros para aquisição dos equipamentos de irradiação e manutenção dos tratamentos, bem como os valores de repasses feitos pelos sistemas de saúde para os procedimentos de radioterapia em próstata. / Mestre
12

Metodologia para avaliação dos benefícios clínicos e socioeconômicos do uso da técnica de IMRT em tumores da próstata / Methodology for the evaluation of the clinical and socioeconomic benefits of IMRT technique in prostate tumors

Nunes, Isabella Paziam Fernandes [UNESP] 23 February 2018 (has links)
Submitted by ISABELLA PAZIAM FERNANDES NUNES null (ipaziam@me.com) on 2018-03-14T12:47:35Z No. of bitstreams: 1 dissertacao - nunes ipf.pdf: 3167962 bytes, checksum: bd9df494a7b84197900f4be8d90cd090 (MD5) / Approved for entry into archive by Luciana Pizzani null (luciana@btu.unesp.br) on 2018-03-19T11:47:25Z (GMT) No. of bitstreams: 1 nunes_ipf_me_bot.pdf: 3167962 bytes, checksum: bd9df494a7b84197900f4be8d90cd090 (MD5) / Made available in DSpace on 2018-03-19T11:47:25Z (GMT). No. of bitstreams: 1 nunes_ipf_me_bot.pdf: 3167962 bytes, checksum: bd9df494a7b84197900f4be8d90cd090 (MD5) Previous issue date: 2018-02-23 / O presente estudo consiste na análise da viabilidade econômica e financeira da implantação da radioterapia de intensidade modulada (IMRT) no tratamento do câncer de próstata e comparar seus benefícios clínicos frente aos procedimentos similares custeados pelos sistemas de saúde públicos e privados. Para tanto, foram analisadas as distribuições de dose de radiação preconizadas nos planejamentos radioterápicos com as técnicas de radioterapia conformacional tridimensional (3D-CRT) e de intensidade modulada (IMRT), prescrita para 20 pacientes com câncer de próstata tratados em um serviço de radioterapia privado. Para verificação da qualidade da distribuição de dose de radiação no volume de tratamento, foram analisados os índices de homogeneidade (IH) e de conformidade (IC) de cada um dos planos radioterápicos estudados. Em comparação com a técnica 3D-CRT, a técnica de IMRT permitiu uma melhor cobertura e conformação da dose prescrita no volume alvo de planejamento (PTV), porém distribuída de forma mais heterogênea. Além disso, avaliou-se os custos financeiros para aquisição dos equipamentos de irradiação e manutenção dos tratamentos, bem como os valores de repasses feitos pelos sistemas de saúde para os procedimentos de radioterapia em próstata. / The present study consists in analyzing the economic and financial viability to establish the intensity modulated radiotherapy (IMRT) in the treatment for prostate cancer and compare its clinical benefits to similar procedures funded by public and private health systems. In order to do so, the radiation absorbed-dose distributions recommended in the radiotherapy plans with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques, prescribed for 20 patients with prostate cancer treated in a private radiotherapy clinic, were evaluated. To verify the quality of the radiation dose distribution in the treatment volume, the homogeneity index (HI) and the conformity index (CI) of each radiotherapy plans studied were analyzed. In contrast to the 3D-CRT technique, the IMRT technique allowed a better coverage and conformation of the radiation dose prescribed in the planning target volume (PTV), but distributed in a more heterogeneous way. It was also evaluated the financial costs for the acquisition of the irradiation equipment and for the maintenance of the treatments, as well as the values of the on-lending made by the health systems for the radiotherapy procedures for the prostate.
13

Implantation et validation d’un modèle Monte Carlo du Cyberknife dans un outil de calcul de dose clinique

Zerouali Boukhal, Karim 12 1900 (has links)
Le Cyberknife (Accuray, Sunnyvale, CA) est un appareil de radiochirurgie stéréotaxique sans cadre. Il a été développé pour administrer de fortes doses dans des volumes restreints. Aussi, pour obtenir une conformation optimale de traitement, des champs circulaires de petites dimensions sont utilisés (\phi = 0,5 à 6 cm). L'étude dosimétrique de ces petits champs doit être menée selon de nouveaux standards puisque ceux-ci échappent aux définitions du TG-51. L'objectif de ce projet est d'implanter une plateforme de calcul de dose de type Monte Carlo pour le CyberKnife en clinique. Il s'articule autour de deux réalisations principales. Tout d'abord, une caractérisation dosimétrique du modèle Monte Carlo de l'accélérateur linéaire du CyberKnife a été menée à travers des simulations Monte Carlo générées par le moteur de EGSnrc. Cette étude est basée sur la caractérisation de la réponse d'un détecteur à un champ de type CK à partir de simulations EGS_chamber. Cette approche permet de prendre en compte l'impact du détecteur sur les mesures expérimentales. Cet aspect est d'autant plus important que le modèle Monte Carlo de l'accélérateur est validé à partir de mesures expérimentales. Les résultats obtenus montrent une bonne concordance, <1% ou 1 mm, entre les mesures expérimentales et les données de simulations pour les grands champs. Pour les champs de diamètre < 12,5 mm, le modèle est moins exact et une correction est appliquée pour atteindre une différence de <1% ou 1 mm. Deuxièmement, ce modèle validé du CK a été implanté dans un cadre de calcul Monte Carlo complet. Une plateforme de calcul dédiée aux calculs Monte Carlo, WebTPS, a été adaptée aux calculs de dose CK. Cette plateforme reçoit les données relatives au plan de traitement et lance des calcul EGSnrc sur un superordinateur. Cette approche tend à réduire les approximations lors de l'évaluation dosimétrique de plans de traitements cliniques. Une incertitude inférieure à 1% peut être atteinte en deux heures de calcul. Ce projet a donc pour objectif de développer une référence clinique pour le calcul de dose dans le cadre de la radiochirurgie stéréotaxique. L'outil WebTPS pourrait être particulièrement utile en clinique, l'algorithme de calcul de dose du CK étant limité dans plusieurs situations de traitement. / Purpose: The scope of this study is to implement a clinical Monte Carlo dose calculation system based on the EGSnrc engine. This web-based tool will be mostly used to evaluate clinical treatment plans in highly heterogeneous phantoms. Methods: The Monte Carlo calculation tool is based on the DOSXYZnrc user code. The platform automatically converts CyberKnife clinical plan to the user code input files. Phantoms can be created from HU to ED curves or by manually assigning material using medical contours. Parallel computation is made on a Compute Canada high-performance cluster to reduce simulation time. A Monte Carlo CyberKnife model is built on BEAMnrc user code using the manufacturer specifications. Simulated and experimental data is compared to estimate the electron beam parameters. The beam energy estimation is based on percent depth dose (PDD) comparison while the full width at half max (FWHM) is validated by output factor (OF) and off-axis ratio (OAR). An EGS_chamber model of the PTW60012 diode is used in the OF calculation. A set of phase-spaces is generated from the optimal model and for each collimator to calculate dose contribution from each incident beam. Results: The linac model optimisation yielded a 0.5% PDD agreement between experimental and simulation data, and a 0.5% or 1 mm for OAR. DOSxyz simulation of full treatment plan, based on the preliminary CyberKnife model, were achieved. Total Monte Carlo dose calculation have been achieved for heterogeneous phantoms. Uncertainty under 1% can be achieved for less than 2 hour of computing time. However, computing time estimation is nontrivial due to its dependence on cluster availability. Conclusion: This work aims to develop a suitable tool for reference plan dose calculation. This web-based tool would be used in several clinical and research applications where the CyberKnife embedded ray-tracing algorithm would show significant limitations. Because it is destined to a clinical use, the whole dose calculation system will be rigorously validated. / Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada.
14

Implantation et validation d’un modèle Monte Carlo du Cyberknife dans un outil de calcul de dose clinique

Zerouali Boukhal, Karim 12 1900 (has links)
Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada. / Le Cyberknife (Accuray, Sunnyvale, CA) est un appareil de radiochirurgie stéréotaxique sans cadre. Il a été développé pour administrer de fortes doses dans des volumes restreints. Aussi, pour obtenir une conformation optimale de traitement, des champs circulaires de petites dimensions sont utilisés (\phi = 0,5 à 6 cm). L'étude dosimétrique de ces petits champs doit être menée selon de nouveaux standards puisque ceux-ci échappent aux définitions du TG-51. L'objectif de ce projet est d'implanter une plateforme de calcul de dose de type Monte Carlo pour le CyberKnife en clinique. Il s'articule autour de deux réalisations principales. Tout d'abord, une caractérisation dosimétrique du modèle Monte Carlo de l'accélérateur linéaire du CyberKnife a été menée à travers des simulations Monte Carlo générées par le moteur de EGSnrc. Cette étude est basée sur la caractérisation de la réponse d'un détecteur à un champ de type CK à partir de simulations EGS_chamber. Cette approche permet de prendre en compte l'impact du détecteur sur les mesures expérimentales. Cet aspect est d'autant plus important que le modèle Monte Carlo de l'accélérateur est validé à partir de mesures expérimentales. Les résultats obtenus montrent une bonne concordance, <1% ou 1 mm, entre les mesures expérimentales et les données de simulations pour les grands champs. Pour les champs de diamètre < 12,5 mm, le modèle est moins exact et une correction est appliquée pour atteindre une différence de <1% ou 1 mm. Deuxièmement, ce modèle validé du CK a été implanté dans un cadre de calcul Monte Carlo complet. Une plateforme de calcul dédiée aux calculs Monte Carlo, WebTPS, a été adaptée aux calculs de dose CK. Cette plateforme reçoit les données relatives au plan de traitement et lance des calcul EGSnrc sur un superordinateur. Cette approche tend à réduire les approximations lors de l'évaluation dosimétrique de plans de traitements cliniques. Une incertitude inférieure à 1% peut être atteinte en deux heures de calcul. Ce projet a donc pour objectif de développer une référence clinique pour le calcul de dose dans le cadre de la radiochirurgie stéréotaxique. L'outil WebTPS pourrait être particulièrement utile en clinique, l'algorithme de calcul de dose du CK étant limité dans plusieurs situations de traitement. / Purpose: The scope of this study is to implement a clinical Monte Carlo dose calculation system based on the EGSnrc engine. This web-based tool will be mostly used to evaluate clinical treatment plans in highly heterogeneous phantoms. Methods: The Monte Carlo calculation tool is based on the DOSXYZnrc user code. The platform automatically converts CyberKnife clinical plan to the user code input files. Phantoms can be created from HU to ED curves or by manually assigning material using medical contours. Parallel computation is made on a Compute Canada high-performance cluster to reduce simulation time. A Monte Carlo CyberKnife model is built on BEAMnrc user code using the manufacturer specifications. Simulated and experimental data is compared to estimate the electron beam parameters. The beam energy estimation is based on percent depth dose (PDD) comparison while the full width at half max (FWHM) is validated by output factor (OF) and off-axis ratio (OAR). An EGS_chamber model of the PTW60012 diode is used in the OF calculation. A set of phase-spaces is generated from the optimal model and for each collimator to calculate dose contribution from each incident beam. Results: The linac model optimisation yielded a 0.5% PDD agreement between experimental and simulation data, and a 0.5% or 1 mm for OAR. DOSxyz simulation of full treatment plan, based on the preliminary CyberKnife model, were achieved. Total Monte Carlo dose calculation have been achieved for heterogeneous phantoms. Uncertainty under 1% can be achieved for less than 2 hour of computing time. However, computing time estimation is nontrivial due to its dependence on cluster availability. Conclusion: This work aims to develop a suitable tool for reference plan dose calculation. This web-based tool would be used in several clinical and research applications where the CyberKnife embedded ray-tracing algorithm would show significant limitations. Because it is destined to a clinical use, the whole dose calculation system will be rigorously validated.
15

Etude et validation clinique d'un modèle aux moments entropique pour le transport de particules énergétiques : application aux faisceaux d'électrons pour la radiothérapie externe / Study and clinical validation of a deterministic moments based algorithm dedicated to the energetic particles transport simulations : application to the electron beams in external radiotherapy

Caron, Jérôme 07 December 2016 (has links)
En radiothérapie externe, les simulations des dépôts de dose aux patients sont réalisées sur des systèmesde planification de traitement (SPT) dotés d'algorithmes de calcul qui diffèrent dans leur modélisationdes processus physiques d'interaction des électrons et des photons. Or ces SPT, bien que rapides enclinique, montrent parfois des erreurs significatives aux abords des hétérogénéités du corps humain. Montravail de thèse a consisté à valider le modèle aux moments entropique M1 pour des faisceaux d'électronscliniques. Cet algorithme développé au CELIA dans le cadre de la physique des plasmas repose sur larésolution de l'équation cinétique de transport de Boltzmann linéarisée selon une décomposition auxmoments. M1 nécessite une fermeture du système d'équations basée sur le H-Théorème (maximisationde l'entropie). Les cartographies de dose 1D de faisceaux d'électrons de 9 et 20 MeV issues de M1 ontété comparées à celles issues de codes de référence : macro Monte-Carlo clinique (eMC) et full Monte-Carlo (GEANT-MCNPX) ainsi qu'à des données expérimentales. Les cas tests consistent en des fantômesd'abord homogènes puis de complexité croissante avec insertion d'hétérogéenéités mimant les tissus osseuxet pulmonaire. In fine, le modèle aux moments M1 démontre des propriétés de précision meilleures quecertains algorithmes de type Pencil Beam Kernel encore utilisés cliniquement et proches de celles fourniespar des codes full Monte-Carlo académiques ou macro Monte-Carlo cliniques, même dans les cas testscomplexes retenus. Les performances liées aux temps de calcul de M1 ont été évaluées comme étantmeilleures que celles de codes Monte-Carlo. / In radiotherapy field, dose deposition simulations in patients are performed on Treatment Planning Systems (TPS) equipped with specific algorithms that differ in the way they model the physical interaction processes of electrons and photons. Although those clinical TPS are fast, they show significant discrepancies in the neighbooring of inhomogeneous tissues. My work consisted in validating for clinical electron beams an entropic moments based algorithm called M1. Develelopped in CELIA for warm and dense plasma simulations, M1 relies on the the resolution of the linearized Boltzmann kinetic equation for particles transport according to a moments decomposition. M1 equations system requires a closure based on H-Theorem (entropy maximisation). M1 dose deposition maps of 9 and 20 MeV electron beams simulations were compared to those extracted from reference codes simulations : clinical macro Monte-Carlo (eMC) and full Monte-carlo (GEANT4-MCNPX) codes and from experimental data as well. The different test cases consisted in homogeneous et complex inhomogeneous fantoms with bone and lung inserts. We found that M1 model provided a dose deposition accuracy better than some Pencil Beam Kernel algorithm and close of those furnished by clinical macro and academic full Monte-carlo codes, even in the worst inhomogeneous cases. Time calculation performances were also investigated and found better than the Monte-Carlo codes.
16

Simulation d’un accélérateur linéaire d’électrons à l’aide du code Monte-Carlo PENELOPE : métrologie des traitements stéréotaxiques par cônes et évaluation de l’algorithme eMC / Simulation of a linear accelerator with PENELOPE Monte Carlo code : stereotactic treatments metrology by cones and eMC algorithm assessment

Garnier, Nicolas 19 December 2018 (has links)
L’accélérateur linéaire d’électrons du Centre Hospitalier Princesse Grace a été simulé à l’aide du code Monte-Carlo PenEasy. Après avoir validé l’ensemble des techniques permettant d’accélérer le temps de calcul (réduction de variance, parallélisation, …), les caractéristiques des faisceaux initiaux d’électrons ont été déterminées pour une énergie photons et quatre énergies électrons afin d’étudier deux problématiques cliniques. La première concerne l’étude comparative des réponses de huit dosimètres pour la mesure des données de base en mini-faisceaux à l’aide de cônes stéréotaxiques de diamètres compris entre 30 mm et 4 mm. Ces faisceaux de photons sont caractérisés par de forts gradients de dose et un manque important d’équilibre électronique latéral, ce qui rend les techniques dosimétriques conventionnelles inadaptées. Des mesures de facteurs d’ouverture collimateur (FOC), de profil de dose et de rendement en profondeur ont été réalisées avec sept détecteurs actifs (diodes, chambres d’ionisations et MicroDiamond) et un détecteur passif (film radiochromique) et comparées avec les résultats issus de la simulation Monte-Carlo considérée comme notre référence. Pour la mesure du FOC, seul le film radiochromique est en accord avec la simulation avec des écarts inférieurs à 1 %. La MicroDiamond semble être le meilleur détecteur actif avec un écart maximal de 3,7 % pour le cône de 5 mm. Concernant les mesures de profils de dose, les meilleurs résultats ont été obtenus avec le film radiochromique et les diodes blindées ou non (écart de pénombre inférieur à 0,2 mm). Pour les rendements en profondeur, l’ensemble des détecteurs utilisés sont satisfaisants (écart de dose absorbée inférieur à 1 %). La deuxième application concerne l’évaluation de l’algorithme de dépôt de dose électron eMC sur des coupes scanographiques. Pour cela, un programme de « voxélisation » sous MATLAB a été développé afin de transformer les nombres Hounsfield issus du scanner en propriété de matériau (densité et composition chimique) utilisable par le code Monte-Carlo PenEasy. Une triple comparaison entre la mesure avec films radiochromiques, le calcul avec l’algorithme eMC et la simulation Monte-Carlo PenEasy a été réalisée dans différentes configurations : des fantômes hétérogènes simples (superposition de plaques de différentes densités), un fantôme hétérogène complexe (fantôme anthropomorphique) et une comparaison sur patient. Les résultats ont montré qu’une mauvaise affectation d’un matériau du milieu provoque un écart de dose absorbée localement (jusqu’à 16 %) mais aussi en aval de la simulation du fait d’une mauvaise prise en compte de la modification du spectre électronique. La comparaison des distributions de dose absorbée sur le plan patient a montré un très bon accord entre les résultats issus de l’algorithme eMC et ceux obtenus avec le code PenEasy (écart < 3 %). / Using the PenEasy Monte-Carlo code was simulated the linear electron accelerator of Princess Grace Hospital Center. After the validation of all the techniques allowing to accelerate the calculation time (variance reduction technique, parallelization, etc.), the characteristics of the initial electron beams were determined for one photon energy and four electron energies in order to study two clinical issues. The first one concerns the comparative study of the responses of eight dosimeters for the measurement of basic data in small fields using stereotactic cones with a diameter between 30 mm to 4 mm. These photon beams are characterized by strong dose gradients and a significant lack of charged particule equilibrium, making conventional dosimetric techniques unsuitable. Output factor measurment (OF), dose profile and depth dose measurements were performed with seven active detectors (diodes, ionization chambers and MicroDiamond) and a passive detector (radiochromic film) and compared with the results from the Monte Carlo simulation considered as our reference. For the OF measurement, only the radiochromic film is in agreement with the simulation with difference less than 1%. The MicroDiamond seems to be the best active detector with a maximum gap of 3.7% for the 5 mm cone. Concerning the dose profile measurements, the best results were obtained with the radiochromic film and diodes shielded or not (penumbre difference of less than 0,2 mm). For depth dose, all the detectors used have good result (absorbed dose difference less than 1 %). The second application concerns the evaluation of the eMC electron deposition algorithm on CT slices. For this, a « voxelisation » program under MATLAB was developed to transform the Hounsfield numbers from the scanner to material property (density and chemical composition) usable by the PenEasy Monte-Carlo code. A triple comparison between measurement with radiochromic films, calculation with the eMC algorithm and Monte-Carlo PenEasy simulation was carried out in different configurations: simple heterogeneous phantom (superposition of plates of different densities), a complex heterogeneous phantom (anthropomorphic phantom) and a patient comparison. The results showed that a wrong material assignment of the medium causes a difference of dose absorbed locally (up to 16%) but also downstream the simulation due to a wrong taking into account of the modification of the electronic spectrum. The absorbed dose distribution comparison on the patient plane showed a very good agreement between the results from the eMC algorithm and those obtained with the PenEasy code (deviation < 3%).
17

Improvements in 3D breast treatment plan quality and efficiency through computer automation of tangential breast radiotherapy treatment plans

Gibbs, Jacob M. 15 June 2023 (has links)
No description available.

Page generated in 0.1161 seconds