• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anti-plasmodium Activity of Small Imidazolium-and Triazolium-based Compounds

Rodriguez, Eva Patricia 25 August 2011 (has links)
In response to growing levels of resistance to currently used antimalarials, there is an urgent need to develop drugs that exhibit novel mechanisms to kill Plasmodium parasites. The objective of this study was to examine the antiparasitic activity of newly synthesized compounds based on imidazolium and triazolium rings. According to our structure/activity relationship studies the key components appear to be their positively charged rings and hydrophobic side groups, and bivalent compounds, which incorporate two positively charged rings, show even greater potency than monovalent compounds. Depending on the concentration used, our compounds appear to primarily inhibit intracellular parasite development or invasion into red blood cells. Selected compounds have been tested in vivo using a P. berghei ANKA murine model. Together, our findings demonstrate that small imidazolium- and triazolium-based compounds display both in vitro and in vivo activity through a novel mechanism of action that may involve inhibition of erythrocyte invasion.
2

Anti-plasmodium Activity of Small Imidazolium-and Triazolium-based Compounds

Rodriguez, Eva Patricia 25 August 2011 (has links)
In response to growing levels of resistance to currently used antimalarials, there is an urgent need to develop drugs that exhibit novel mechanisms to kill Plasmodium parasites. The objective of this study was to examine the antiparasitic activity of newly synthesized compounds based on imidazolium and triazolium rings. According to our structure/activity relationship studies the key components appear to be their positively charged rings and hydrophobic side groups, and bivalent compounds, which incorporate two positively charged rings, show even greater potency than monovalent compounds. Depending on the concentration used, our compounds appear to primarily inhibit intracellular parasite development or invasion into red blood cells. Selected compounds have been tested in vivo using a P. berghei ANKA murine model. Together, our findings demonstrate that small imidazolium- and triazolium-based compounds display both in vitro and in vivo activity through a novel mechanism of action that may involve inhibition of erythrocyte invasion.

Page generated in 0.0415 seconds