• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functionlised N-heterocyclic carbenes and amido imino mixed donors as supporting ligands in organometallic catalysis

Winston, Scott January 2003 (has links)
No description available.
2

Synthesis of Sulfated Carbohydrates Using Sulfuryl Imidazolium Salts

Desoky, Ahmed January 2010 (has links)
Sulfated polysaccharides are widespread in nature. These compounds are implicated in a wide variety of important biological processes such as blood clotting, cell adhesion, and cell–cell communication. However, detailed characterization of their specific biological roles has proved to be very challenging. One reason for this is that the synthesis of even relatively small sulfated oligosaccharides still remains a considerable challenge. A general approach to the synthesis of sulfated carbohydrates was examined in which the sulfate group is incorporated at the beginning of the syntheses as a protected sulfodiester. Towards this end, a series of modified sulfuryl imidazolium salts were prepared and examined as reagents for incorporating 2,2,2-trichloroethyl-protected sulfate esters into monosaccharides.. A more efficient sulfating agent was obtained by incorporating a methyl group at the 2-position of the imidazolium ring. O-Sulfations that required prolonged reaction times and a large excess of the original sulfuryl imidazolium salt (SIS) which bears no alkyl groups on the imidazolium ring, were more readily achieved using the new reagent. Direct regioselective incorporation of TCE-protected sulfates into monosaccharides was achieved using the new imidazolium salt. We have also shown that the new SIS can also be used for the direct disulfation of monosaccharides and that trisulfated monosaccharides can also be prepared from the disulfated compounds. SIS’s bearing the TFE and phenyl groups, were readily prepared. In most instances, both TFE- and phenyl protected sulfated carbohydrates were easily prepared in good yields using SIS’s. Deprotection of the TFE group from secondary sulfates in carbohydrates and aryl sulfates was achieved in excellent yields using NaN3 in DMF. We applied the sulfate protecting group strategy towards the total synthesis of the tetrasaccharide portion of a disulfated glycosphingolipid called SB1a. Efficient routes were developed for the construction of the left- and right-hand protected disaccharide portions of the SB1a tetrasaccharide.
3

Synthesis of Sulfated Carbohydrates Using Sulfuryl Imidazolium Salts

Desoky, Ahmed January 2010 (has links)
Sulfated polysaccharides are widespread in nature. These compounds are implicated in a wide variety of important biological processes such as blood clotting, cell adhesion, and cell–cell communication. However, detailed characterization of their specific biological roles has proved to be very challenging. One reason for this is that the synthesis of even relatively small sulfated oligosaccharides still remains a considerable challenge. A general approach to the synthesis of sulfated carbohydrates was examined in which the sulfate group is incorporated at the beginning of the syntheses as a protected sulfodiester. Towards this end, a series of modified sulfuryl imidazolium salts were prepared and examined as reagents for incorporating 2,2,2-trichloroethyl-protected sulfate esters into monosaccharides.. A more efficient sulfating agent was obtained by incorporating a methyl group at the 2-position of the imidazolium ring. O-Sulfations that required prolonged reaction times and a large excess of the original sulfuryl imidazolium salt (SIS) which bears no alkyl groups on the imidazolium ring, were more readily achieved using the new reagent. Direct regioselective incorporation of TCE-protected sulfates into monosaccharides was achieved using the new imidazolium salt. We have also shown that the new SIS can also be used for the direct disulfation of monosaccharides and that trisulfated monosaccharides can also be prepared from the disulfated compounds. SIS’s bearing the TFE and phenyl groups, were readily prepared. In most instances, both TFE- and phenyl protected sulfated carbohydrates were easily prepared in good yields using SIS’s. Deprotection of the TFE group from secondary sulfates in carbohydrates and aryl sulfates was achieved in excellent yields using NaN3 in DMF. We applied the sulfate protecting group strategy towards the total synthesis of the tetrasaccharide portion of a disulfated glycosphingolipid called SB1a. Efficient routes were developed for the construction of the left- and right-hand protected disaccharide portions of the SB1a tetrasaccharide.
4

Mass spectrometry of organic and chlorometallated salts

Elaiwi, Ahmed Essa January 1994 (has links)
No description available.
5

SYNTHESIS AND BIOLOGICAL EVALUATION OF IMIDAZOLIUM SALTS AS ANTI-CANCER AGENTS

Southerland, Marie R. 23 May 2018 (has links)
No description available.
6

Anti-plasmodium Activity of Small Imidazolium-and Triazolium-based Compounds

Rodriguez, Eva Patricia 25 August 2011 (has links)
In response to growing levels of resistance to currently used antimalarials, there is an urgent need to develop drugs that exhibit novel mechanisms to kill Plasmodium parasites. The objective of this study was to examine the antiparasitic activity of newly synthesized compounds based on imidazolium and triazolium rings. According to our structure/activity relationship studies the key components appear to be their positively charged rings and hydrophobic side groups, and bivalent compounds, which incorporate two positively charged rings, show even greater potency than monovalent compounds. Depending on the concentration used, our compounds appear to primarily inhibit intracellular parasite development or invasion into red blood cells. Selected compounds have been tested in vivo using a P. berghei ANKA murine model. Together, our findings demonstrate that small imidazolium- and triazolium-based compounds display both in vitro and in vivo activity through a novel mechanism of action that may involve inhibition of erythrocyte invasion.
7

Anti-plasmodium Activity of Small Imidazolium-and Triazolium-based Compounds

Rodriguez, Eva Patricia 25 August 2011 (has links)
In response to growing levels of resistance to currently used antimalarials, there is an urgent need to develop drugs that exhibit novel mechanisms to kill Plasmodium parasites. The objective of this study was to examine the antiparasitic activity of newly synthesized compounds based on imidazolium and triazolium rings. According to our structure/activity relationship studies the key components appear to be their positively charged rings and hydrophobic side groups, and bivalent compounds, which incorporate two positively charged rings, show even greater potency than monovalent compounds. Depending on the concentration used, our compounds appear to primarily inhibit intracellular parasite development or invasion into red blood cells. Selected compounds have been tested in vivo using a P. berghei ANKA murine model. Together, our findings demonstrate that small imidazolium- and triazolium-based compounds display both in vitro and in vivo activity through a novel mechanism of action that may involve inhibition of erythrocyte invasion.
8

The Development of Next Generation Architectures for -N-Heterocyclic Carbene Pincer Ligands

Howell, Tyler Owen 15 August 2014 (has links)
Methodologies for expanding the architectural diversity of -N-heterocyclic carbene (NHC) pincer ligand precursors and transition metal complexes have been developed for the production of more efficient catalyst, which will be employed in the synthesis of pharmaceuticals. An efficient route for the synthesis and isolation of bis-1,3-(3'-aryl-N-heterocycl-1'-yl)arenes has been established, and preliminary data for metalation and transmetalation of a N, N'-diaryl imidazolium salt has been acquired. Additionally, a proficient methodology for the synthesis of mixed, unsymmetrical -NHC pincer ligand precursors has been discovered, and preliminary data for mixed, unsymmetrical transition metal complexes is also included. These methodological expansions will lead to more efficient catalyst that decrease the expenditure of energy required for the synthesis of pharmaceuticals, thus making their synthesis more favorable for the environment and their price more affordable for consumers.
9

An Architectural Exploration in Coordination Driven Self-Assembly & Fluorescent Imidazolium Salts as Picric Acid Receptors

Roy, Bijan January 2016 (has links) (PDF)
Nature has always remained a constant source of inspiration for chemists for synthesizing natural products, mimicking enzymatic reactions or to construct molecular architectures resembling biological assemblies. With the rapid growth of ‘Supramolecular Chemistry’ along with the advancement of the synthetic methodologies, molecular systems with brand new complexities have been synthesized, alongside the efficacy of weak, reversible non-covalent interactions have also been extensively explored. A number of such forces including hydrogen bonding, solvophobic effect, dynamic covalent interactions and metal-ligand coordination have been exploited to assemble the molecular building blocks and stitch them together to construct discrete ‘self-assembled’ architectures integrated with desired functionalities. Metal-ligand coordination driven self-assembly certainly evolved as one of the most successful approaches for the construction of discrete supramolecular architectures during last two and half decades. The high directionality and reversible nature of certain metal-ligand bonds allow the pre-designing of sophisticated architectures which can be successfully obtained by ‘error corrections’ via a thermodynamically controlled self-assembly process. Numerous aesthetically elegant two dimensional (2D) and three dimensional (3D) metallosupramolecular architectures have been constructed which have been studied for various potential applications including guest encapsulation, catalysis, sensing, optoelectronics, drug delivery, protection of reactive species etc. Construction of such molecular architectures uses symmetric and rigid building blocks which strictly preserves their geometrical coding and thus finally determines the fate of the self-assembly. Pyridyl-based donors have been extensively used due to their well-behaved coordination with transition metal ions. Interestingly, imidazole based donors remained almost unexplored for such purpose mainly due to the rotational flexibility of imidazole moieties owing to the lack of -electron delocalization with the aromatic backbone, which makes pre-designing an architecture extremely difficult. However, this unpredictability can lead to the formation of unprecedented molecular architectures. Furthermore, the conventional rigid ‘acceptors’ used in the ‘directional bonding approach’ always results in the formation of rigid assemblies, which cannot be utilized for the construction of smart molecular machine based applications. In this context, incorporation of restricted rigidity in the building blocks can be a convenient approach to construct versatile and flexible supramolecular architectures. Although flexible donors are quite common in coordination-driven self-assembly, the use of flexible metal acceptor is scarcely Highly symmetric spherical assemblies of square planer Pd(II) and Pt(II) ions are one of the most extensively studied metallosupramolecular architectures owing to their topological similarity with the spherical virus capsids. Unfortunately, none of the reported molecular spheres are soluble in water which restricts their applications in aqueous media. On the other hand, most of the metallosupramolecular architectures cannot be used for redox based applications as the oxidation state of the associated metal ions must be kept unaltered. Although, assemblies constructed mainly by the ferrocene containing acceptors are shown to be exhibiting redox property, the donor inherited redox active metallosupramolecular systems are extremely rare. Discrete 3D metallosupramolecular cages have been extensively studied as synthetic hosts where the hydrophobic pockets have been utilized as safe shelter for reactive species, for catalyzing chemical transformations, tuning electronic and optical properties of guest molecules, as delivery vehicle for drug molecules etc. However, a major drawback of many such 3D cages is associated with their closed-shell topology, where the large cavities are accessible though relatively much smaller apertures which prevent larger guest molecules to enter inside. So, an interesting finding in this field would be to construct molecular hosts with larger apertures. Picric acid (PA) is a strong organic acid and like many other polynitroaromatic compounds, it is a powerful explosive. In addition, it has large scale industrial application for the synthesis of dyes and pharmaceuticals. However, PA has potential health hazards and it is a water pollutant owing to its high aqueous solubility. Thus, the development of selective receptors which can efficiently interact with PA and detect it at very lower concentration is an appealing field of research. Chapter 1 briefly discusses the history of supramolecular chemistry and the concept of ‘self-assembly’ along with the several synthetic methodologies for the construction of discrete supramolecular architectures. It also includes a brief discussion on the various design approaches to construct 2D and 3D molecular architectures by metal-ligand coordination which is followed by an account on some of the important applications of such metallosupramolecular architectures. At the end, a small introduction on the fluorescence-based detection techniques for PA has also been included. Chapter 2A accounts for the exploration of two linearly substituted benzene bisimidazole donors L1 and L2 for coordination-driven self-assembly. L1 and L2 possesses different ‘natural’ donor angles as the imidazole moieties in L2 are twisted heavily with respect to the phenyl plane due to the steric hindrance exerted by the methyl groups. Interestingly, while the self-assembly of L1 with [cis-(tmeda)Pd(NO3)2] (tmeda = N,N,Nꞌ,Nꞌ-tetramethylethane-1,2-diamine) exclusively formed a [3+3] molecular triangle, the self-assembly of L2 yielded a [4+4] molecular square as the major product with the same acceptor. In addition, similar treatment with the analogous Pt(II) acceptor resulted mixtures of [3+3] and [4+4] assemblies in both cases; however, the [3+3] assembly was the major product in case of L2. These contradictory product distributions in case of L2 with analogous Pd(II) and Pt(II) acceptors could be corroborated by the delicate balance between the entropic and enthalpic contributions. Scheme 1. Self-assembly of L1/L2 with [cis-(tmeda)Pd(NO3)2] and [cis-(tmeda)Pt(NO3)2], respectively. Furthermore, the reactions of L1 and L2 with a 0º bisplatinum acceptor, viz. AntPt yielded the expected [2+2] macrocycles (8 and 9), respectively. However, the interesting observations Scheme 2. Self-assemblies of L1 and L2 with the 0º bisplatinum acceptor AntPt. obtained from the variable temperature NMR studies suggested the existence of a mixture of inter-convertible conformational isomeric structures of 9. Chapter 2B describes the synthesis of a novel semi-rigid bisplatinum acceptor bisPt-NO3 based on benzil backbone for the construction of flexible metallamacrocycles. The benzil group was selected due to its unique rotational flexibility along the benzyl C-C bond which can generate a wide range of bite angles to make it compatible with the variety of donors of diverse shapes and sizes. The acceptor was successfully self-assembled with four different bisimidazole donors (L1-L4) to yield corresponding [2+2] metallamacrocycles (M1-M4) which were characterized by multinuclear NMR and ESI-MS spectrometry; and their structures were elucidated by semi-empirical geometry optimizations. Scheme 3. Self-assembly of [2+2] metallamacrocycles M1-M4 by a semi-rigid bisplatinum acceptor bisPt-NO3. Chapter 3 discusses the synthesis of the very first example of a water soluble molecular sphere MC-1 by the self-assembly of square planar Pd(II) ions with a flexible cationic tritopic donor La(NO3)3 containing 4,4-bispyridyl arms. The structural flexibility of La(NO3)3 makes it capable of binding with metal ions in its syn- or anti-conformations which was also experimentally observed in the structures of the three newly synthesized coordination polymers, viz. Ag-CP, Zn-CP and Cd-CP constructed by using La(NO3)3 as (co)ligand. Finally, the 4:3 self-assembly of [La(NO3)3] and Pd(NO3)2 in aqueous media produced the desired M6L8 type Scheme 4. Self-assembly of the water soluble molecular dice MC-1 from the tricationic tritopic donor La(NO3)3. molecular sphere- MC-1, which contain 36+ overall charges. The compound could be easily solubilized in water after isolation as solid by simple stirring at room temperature. Single crystal X-ray diffraction analysis (SCXRD) revealed the ‘dice’-shaped architecture of MC-1 where the eight faces are occupied by the coordinated Pd2+ ions and the bispyridyl arms and the vertices are occupied by mesityl moieties. MC-1 is stable in aqueous media, however disintegrates in DMSO, as observed by variable temperature NMR experiments. In addition, MC-1 also produced ligand inherited redox signals in cyclic voltammetry experiments. Chapter 4 describes the synthesis of a novel non-symmetric tetraimidazole donor L based on carbazole backbone. The complexity of the donor is associated with the allowed free rotation of the imidazole moieties along with the non-symmetric nature of the carbazole backbone which make L a very unusual donor for coordination-driven self-assembly. The crystal structure of L showed that the presence of the N-Me group caused a greater twisting of the nearby imidazole moieties with respect to the other set of imidazole moieties. The self-assembly of L with [cis-(en)Pd(NO3)2] (en = ethane-1,2-diamine) yielded a mixture of M4L8 and M6L12 type self-assembled products, as evidenced from the ESI-MS spectrometry. However, the DOSY NMR spectra of the product showed a single diffusion coefficient for all the peaks, indicating that both type of assemblies have similar size and hence suggested the formation of a tetrafacial barrel and a cubic architecture. A similar self-assembly of L with [cis-(tmeda)Pd(NO3)2] also produced a water soluble product. ESI-MS spectra in this case only confirmed the formation of a M4L8 assembly- MB-1. SCXRD analysis of the coronene encapsulated complex of MB-1 gave more insights on the sophisticated non-symmetric tetrafacial barrel architecture of MB-1 with large Scheme 5. Construction of the water soluble molecular barrel MB-1 by the self-assembly of a non-symmetric tetraimidazole donor L. rectangular apertures. The centrosymmetric molecule can encapsulate two aromatic guest molecules inside its hydrophobic cavity and was found to be efficiently encapsulating polyaromatic hydrocarbons (PAHs) in aqueous media. In addition, MB-1 has been successfully exploited to carry water insoluble perylene molecule inside HeLa cells for fluorescence imaging purpose without showing significant toxicity. L also formed a water insoluble tetrafacial barrel (MB-2) by self-assembly with [cis-(dppf)Pd(OTf)] (dppf=diphenylphosphino ferrocene) which interestingly has a symmetrical architecture, as evidenced from the SCXRD analysis. The formation of the symmetrical barrel is driven by the steric hindrance between the bulky phenyl groups of the nearby dppf moieties. Chapter 5 reports the study of interactions between picric acid (PA) with a few newly synthesized fluorescent imidazolium salts (S1-S3). The fluorescence titration study of the positively charged receptors with PA showed rapid decrease of the corresponding fluorescence intensities upon gradual addition of PA. The Stern-Volmer plots suggested the involvement of both static and dynamic quenching mechanisms which was further supported by fluorescence lifetime measurements, NMR and UV-Vis spectroscopic analyses. The values of the Stern-Volmer constants (Ksv) reflected strong receptor-PA binding. The quenching efficiency calculations in the presence of several other analytes proved that the receptors are highly selective for PA in both aqueous and non-aqueous media. The mode of interactions in solid state was investigated by the crystal structure analysis of the [S1PA] complex. 1H NMR spectra of the same complex indicated strong interaction between the imidazolium moieties of the receptor Scheme 6. The fluorescent imidazolium salts based receptors S1-S3 and the florescence titration plot for S1 with PA. Inset: the solutions of S1 and (S1+PA) in DMSO under UV light. with PA in solution; however, no significant interaction of PA with the anthracene moieties was observed in solution as we well as in the solid state. Also the quenching efficiencies and the Ksv values were correlated with the positive charge(s) present on the receptors with the help of two newly synthesized mono-positive receptors S4 and S5.
10

Caracterização do potencial antifúngico e antibiofilme do sal imidazólico cloreto de 1-metil-3-hexadecilimidazol (C16MlmCl) e das fraçoes purificadas de mate (Ilex paraguariensis A. St. Hil.) frente a células de biofilme de Candida tropicalis / Description of potential and antifungal antibiofilm imidazolium Salt 1- Methyl-3 – octilimidazolium chloride(c16mimcl) and purified fraction of mate ( ilez paraguariensis to. St. Hil.) front of cells biofilme Candida Tropicalis

Bergamo, Vanessa Zafaneli January 2014 (has links)
Em contraste com a vasta descrição na literatura científica dos biofilmes bacterianos, poucos trabalhos focam o estudo da formação e as estratégias de inibição da constituição do biofilme fúngico. Este trabalho objetiva a caracterização do potencial antifúngico e antibiofilme do sal imidazólico 1-metil-3-octilimidazol cloreto (C16MImCl), e das frações (F70 e F90) purificadas de saponinas mate (Ilex paraguariensis A. st. Hil.), frente a células de biofilme de seis isolados clínicos de Candida tropicalis. A Concentração Inibitória Mínima (CIM) do C16MImCl foi de 0,014μg/mL frente às células planctônicas, ao passo que as Frações de Saponinas da Erva Mate (FSEM) não apresentaram atividade antifúngica. Utilizando o cateter traqueal (CT) como corpo de prova, foi utilizado para avaliar a capacidade de inibição e remoção do biofilme. Avaliou-se também a Concentração Mínima de Erradicação do Biofilme (CMEB) para remoção do biofilme pré-formado pelo método da microplaca. Para a atividade antibiofilme foi observado que o C16MImCl, apresentou melhor resultado quando comparado ao fluconazol. As FSEM também apresentaram atividade antibiofilme quando comparados ao fluconazol, entretanto menores do que o tensoativo sintético Pela análise dos resultados de CMEB, o C16MImCl foi o composto com maior capacidade de erradicar o biofilme pré-formado, na concentração de 0,9 μg/mL (92% a 100% de remoção do biofilme). Os demais compostos testados (fluconazol, FEM e a água) não apresentaram atividade removedora, observando-se valores menores que 80% de remoção. Tanto as concentrações nas quais C16MImCl inibiu as células planctônicas (0,014 μg/mL) como as de biofilme (0,028 -0,225 μg/mL) foram mais baixas que as obtidas pelo fluconazol. Os resultados obtidos demonstram a potencialidade destes tensoativos, principalmente o C16MImCl, que demonstrou baixa toxicidade e provável mecanismo de ação sobre a síntese do ergosterol. Assim, é possível afirmarmos que estes tensoativos representam uma potencial alternativa para o controle químico de fungos leveduriformes, especialmente as ocasionadas por células de biofilme por C. tropicalis. / In contrast to the extensive description in the literature of bacterial biofilms, few works focus on the study of the formation and strategies for inhibiting the formation of fungal biofilms. This work aims to characterize the antifungal potential and antibiofilm the imidazole salt 1 - methyl - 3 - octilimidazol chloride (C16MImCl), and fractions (F70 and F90) purified saponins mate (Ilex paraguariensis A. st. Hil.), against to biofilm cells of six clinical isolates of Candida tropicalis. The Minimum Inhibitory Concentration (MIC) of C16MImCl was 0.014 mg / mL to planktonic cells, whereas the Saponin Fractions of Yerba Mate (SFYM) showed no antifungal activity. Using the tracheal catheter (CT) as a specimen was used to evaluate the ability of the biofilm inhibition and removal. We also assessed the Minimum Biofilm Eradication Concentration (MBEC) to remove the preformed biofilms by the microplate method. For antibiofilm activity was observed that C16MImCl, showed better results when compared to fluconazole. The SFYM also had antibiofilm activity when compared to fluconazole, however smaller than the synthetic surfactant. By analyzing the results MBEC, the compound C16MImCl was capacity to eradicate pre- formed biofilm in a concentration of 0.9 mg / mL (92% to 100% biofilm removal) The other tested compounds (fluconazole, SFYM and water) showed no activity remover, observing less than 80 % removal values. Both concentrations at which they inhibit planktonic cells C16MImCl (0.014 μg/mL) and the biofilm (0.028 -0.225 μg/ml) were lower than those obtained by fluconazole. The results obtained demonstrate the potential of these surfactants, especially C16MImCl, which demonstrated low toxicity and probable mechanism of action on the synthesis of ergosterol. Thus, it is possible to assert that these surfactants are a potential alternative to chemical control of yeasts, especially those caused by biofilm cells of C. tropicalis.

Page generated in 0.1013 seconds