• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Heterogeneous photocatalytic degradation of organic pollutants in water over nanoscale powdered titanium dioxide : the photocatalytic degradation of organic compounds in water (Reactive Orange 16, Triclocarbon, Clopyralid and Estrogens (estrone, 17ß-estradiol, and 17α-ethinylestradiol)) was studied : the reaction kinetics and the effect of the operating parameters on the performance of the system were determined; a comparison with other advanced oxidation processes (O₃, H₂O₂, UV) was also made

Mezughi, Khaled M. January 2010 (has links)
Organic contaminants from industrial and/or domestic effluents may be harmful to humans directly or indirectly by degrading the quality of the aquatic environment. Consequently these contaminants must be reduced to levels that are not harmful to humans and the environment before disposal. Chemical, physical and biological methods exist for the removal of these pollutants from effluents. Among the available chemical methods, heterogeneous photocatalytic oxidation has been found particularly effective in removing a large number of persistent organics in water. In this study, photocatalytic degradation was explored for the removal of reactive azo-dye (textile dye), triclocarban (disinfectant), clopyralid (herbicide) and three endocrine disrupting compounds (EDCs) (estrone, 17ß-estradiol and 17α-ethinylestradiol) from synthetic effluents. The major factors affecting the photocatalytic processes including the initial concentration of the target compounds, the amount of catalyst, the light intensity, the type of catalyst, the electron acceptor, the irradiation time and the pH were studied. Other oxidation techniques including (O3, H2O2, UV) were also studied. Generally UV light is used in combination with titanium dioxide, as photocatalyst, to generate photoinduced charge separation leading to the creation of electron-hole pairs. The holes act as electron acceptors hence the oxidation of organics occur at these sites. These holes can also lead to the formation of hydroxyl radicals which are also effective oxidants capable of degrading the organics. The results obtained in this study indicated that photolysis (i.e. UV only) was found to have no effect on the degradation of reactive azo-dye (RO16). However, complete photocatalytic degradation of 20 mg/L (3.24×10-2 mM) RO16 was achieved in 20 minutes in the presence of 1g/L TiO2 Degussa P25 at pH 5.5. Comparison between various types of catalysts (i.e. Degussa P25, VP Aeroperl, Hombifine N) gave varied results but Degussa P25 was the most effective photocatalyst hence it was selected for this study. For RO16 the optimum catalyst concentration was 0.5 g/L TiO2 with initial concentration of 20 mg/L RO16. It was found that the disappearance of RO16 satisfactorily followed the pseudo first-order kinetics according to Langmuir-Hinshelwood (L-H) model. The rate constant was k= 0.0928 mol/min. Photodegradation of TCC was studied in 70%v acetonitrile: 30%v water solutions. UV light degraded TCC effectively and the reaction rates increased with decreasing initial concentration of TCC. UV/TiO2 gave unsatisfactory degradation of triclocarban (TCC) since only 36% were removed in 60 minutes with initial concentration of TCC 20 mg/L. The degradation of clopyralid and the EDCs was studied using three oxidation systems UV/TiO2, UV/H2O2 and O3. Complete degradation of clopyralid (3,6-DCP) was achieved with UV/TiO2 in about 90 minutes at an optimum catalyst concentration of 1g/L. Zero-order kinetics was found to describe the first stage of the photocatalytic reaction in the concentration range 0.078-0.521 mM. At pH 5 the rate constant was 2.09×10⁻⁶ ± 4.32×10⁻⁷ M.s⁻¹. Complete degradation of all the three EDCs was achieved with UV/H₂O₂ in 60 minutes at catalyst concentration of (2.94×10⁻² M). On the other hand complete degradation of the EDCs was achieved in just 2 minutes with ozonation. For high concentration EDCs, TiO₂/UV gave low efficiency of degradation as compared with ozone and H2O2/UV. First-order kinetics was found to describe the photocatalytic reaction of the EDCs.
12

Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors : a study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquifer

Essandoh, Helen Michelle Korkor January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment (SAT) under different loading regimes, using wastewater of much higher strength than usually encountered in SAT systems, and also to investigate the removal of the endocrine disruptors triclocarban (TCC), estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil columns under saturated and unsaturated conditions. Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate in a 2 meter long saturated soil column under a combination of constant hydraulic loading rates (HLRs) and variable COD concentrations as well as variable HLR under constant COD showed that at fixed HLR, a decrease in the influent concentrations of DOC, BOD, total nitrogen and phosphate improved their removal efficiencies. It was found that COD mass loading applied as low COD wastewater infiltrated over short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. On the other hand relatively high concentrations coupled with long residence time gave better removal efficiency for organic nitrogen. Phosphate removal though poor under all experimental conditions, was better at low HLRs. In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed estrogen, while EE2 was the least removed. Reducing the thickness of the unsaturated zone had a negative impact on removal efficiencies of the estrogens whereas increased DOC improved the removal in the saturated columns. Better removal efficiencies were also obtained at lower HLRs and in the presence of silt and clay. Sorption and biodegradation were found to be responsible for TCC removal in a 300 mm long saturated soil column, the latter mechanism however being unsustainable. TCC removal efficiency was dependent on the applied concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance, possibly due to its antibacterial property, as evidenced by a reduction in COD removals in the column. COD in the 2 meter column under saturated conditions was modelled successfully with the advection dispersion equation with coupled Monod kinetics. Empirical models were also developed for the removal of TCC and EE2 under saturated and unsaturated conditions respectively. The empirical models predicted the TCC and EE2 removal profiles well. There is however the need for validation of the models developed
13

Evaluation of the Developmental Effects and Bioaccumulation Potential of Triclosan and Triclocarban Using the South African Clawed Frog, Xenopus Laevis

King, Marie Kumsher 12 1900 (has links)
Triclosan (TCS) and triclocarban (TCC) are antimicrobials found in U.S. surface waters. This dissertation assessed the effects of TCS and TCC on early development and investigated their potential to bioaccumulate using Xenopus laevis as a model. The effects of TCS on metamorphosis were also investigated. For 0-week tadpoles, LC50 values for TCS and TCC were 0.87 mg/L and 4.22 mg/L, respectively, and both compounds caused a significant stunting of growth. For 4-week tadpoles, the LC50 values for TCS and TCC were 0.22 mg/L and 0.066 mg/L; and for 8-week tadpoles, the LC50 values were 0.46 mg/L and 0.13 mg/L. Both compounds accumulated in Xenopus. For TCS, wet weight bioaccumulation factors (BAFs) for 0-, 4- and 8-week old tadpoles were 23.6x, 1350x and 143x, respectively. Lipid weight BAFs were 83.5x, 19792x and 8548x. For TCC, wet weight BAFs for 0-, 4- and 8-week old tadpoles were 23.4x, 1156x and 1310x. Lipid weight BAFs were 101x, 8639x and 20942x. For the time-to-metamorphosis study, TCS showed an increase in weight and snout-vent length in all treatments. Exposed tadpoles metamorphosed approximately 10 days sooner than control tadpoles. For the hind limb study, although there was no difference in weight, snout-vent length, or hind limb length, the highest treatment was more developed compared to the control. There were no differences in tail resorption rates between the treatments and controls. At relevant concentrations, neither TCS nor TCC were lethal to Xenopus prior to metamorphosis. Exposure to relatively high doses of both compounds resulted in stunted growth, which would most likely not be evident at lower concentrations. TCS and TCC accumulated in Xenopus, indicating that the compound has the potential to bioaccumulate through trophic levels. Although TCS may increase the rate of metamorphosis in terms of developmental stage, it did not disrupt thyroid function and metamorphosis in regards to limb development and tail resorption.
14

Bioaccumulation of Triclocarban, Triclosan, and Methyl-triclosan in a North Texas Wastewater Treatment Plant Receiving Stream and Effects of Triclosan on Algal Lipid Synthesis.

Coogan, Melinda Ann 08 1900 (has links)
Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) processing. Methyl-triclosan (M-TCS) is a more lipophilic metabolite of its parent compound, TCS. The focus of this study was to quantify bioaccumulation factors (BAFs) for TCS, M-TCS, and TCC in Pecan creek, the receiving stream for the City of Denton, Texas WWTP by using field samples mostly composed of the alga Cladophora sp. and the caged snail Helisoma trivolvis as test species. Additionally, TCS effects on E. coli and Arabidopsis have been shown to reduce fatty acid biosynthesis and total lipid content by inhibiting the trans-2 enoyl- ACP reductase. The lipid synthesis pathway effects of TCS on field samples of Cladophora spp. were also investigated in this study by using [2-14C]acetate radiolabeling procedures. Preliminary results indicate high TCS concentrations are toxic to lipid biosynthesis and reduce [2-14C]acetate incorporation into total lipids. These results have led to the concern that chronic exposure of algae in receiving streams to environmentally relevant TCS concentrations might affect their nutrient value. If consumer growth is limited, trophic cascade strength may be affected and serve to limit population growth and reproduction of herbivores in these riparian systems.
15

Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors. A study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquifer.

Essandoh, Helen M.K. January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment (SAT) under different loading regimes, using wastewater of much higher strength than usually encountered in SAT systems, and also to investigate the removal of the endocrine disruptors triclocarban (TCC), estrone (E1), 17¿-estradiol (E2) and 17¿- ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil columns under saturated and unsaturated conditions. Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate in a 2 meter long saturated soil column under a combination of constant hydraulic loading rates (HLRs) and variable COD concentrations as well as variable HLR under constant COD showed that at fixed HLR, a decrease in the influent concentrations of DOC, BOD, total nitrogen and phosphate improved their removal efficiencies. It was found that COD mass loading applied as low COD wastewater infiltrated over short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. On the other hand relatively high concentrations coupled with long residence time gave better removal efficiency for organic nitrogen. Phosphate removal though poor under all experimental conditions, was better at low HLRs. In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed estrogen, while EE2 was the least removed. Reducing the thickness of the unsaturated zone had a negative impact on removal efficiencies of the estrogens whereas increased DOC improved the removal in the saturated columns. Better removal efficiencies were also obtained at lower HLRs and in the presence of silt and clay. Sorption and biodegradation were found to be responsible for TCC removal in a 300 mm long saturated soil column, the latter mechanism however being unsustainable. TCC removal efficiency was dependent on the applied concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance, possibly due to its antibacterial property, as evidenced by a reduction in COD removals in the column. COD in the 2 meter column under saturated conditions was modelled successfully with the advection dispersion equation with coupled Monod kinetics. Empirical models were also developed for the removal of TCC and EE2 under saturated and unsaturated conditions respectively. The empirical models predicted the TCC and EE2 removal profiles well. There is however the need for validation of the models developed / Netherlands Organisation for International Cooperation in Higher Education (Nuffic) / The Appendix files for this thesis are unavailable online via Bradford Scholars.
16

Determinação voltamétrica de triclocarban e carbendazim em produtos de higiene pessoal e água potável

Lúcio, Maria Mônica Lacerda Martins 26 August 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-05-11T12:53:38Z No. of bitstreams: 1 arquivo total.pdf: 6105657 bytes, checksum: 8404a0fcb54e3893c95fdfb017f0ac96 (MD5) / Made available in DSpace on 2016-05-11T12:53:38Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 6105657 bytes, checksum: 8404a0fcb54e3893c95fdfb017f0ac96 (MD5) Previous issue date: 2015-08-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Triclocarban (TCC) is a bactericide and fungicide widely used in personal care products, while carbendazim (MBC) is a fungicide widely used in cereal crops and a variety of fruits and vegetables, both are considered environmental contaminants. In this paper, propose the study of oxidation and determination of TCC using glassy carbon electrode (ECV) and the use of a carbon paste electrode modified with carbon nanotubes functionalized multi walled (EPC-NTCPMF) to determine MBC. Electrochemical detection of TCC and MBC was studied using different voltammetric techniques on a wide range of pH and the determination was performed on samples of soaps, only the TCC and drinking water at low concentrations, for both contaminants. For TCC, various oxidation processes were observed, however the peak P1 had greater sensitivity and selectivity in acetate buffer, pH 5.4 and was therefore used for the development of voltammetric methods, direct VOQ and adsorptive stripping voltammetry. For adsorptive stripping voltammetry, the linear response range was from 1.8 to 21 × 10-9 mol L-1 with a detection limit (LD) of 3.2 × 10-10 mol L-1, 1,000 times smaller than the LD obtained by direct VOQ. The method of adsorptive stripping voltammetry showed satisfactory levels of repeatability, 4.1% and reproducibility, 5.4% and was applied to determine TCC in soaps samples and an average recovery of 95.3% and drinking water with an average recovery apparent 95.4%. The MBC peaked main oxidation, almost reversible; the better sensitivity was achieved in H2SO4, pH 1.0 on the EPC-NTCPMF using VOQ. The linear response range is between 3 and 150 × 10-10 mol L-1 to LD 1.1 × 10-11 mol L-1. The method developed showed acceptable levels of repeatability, 4.6% and reproducibility, 6.2% and was applied for MBC determination in drinking water samples obtained average apparent recovery of 95.6%. The results obtained in the development of methods for determination of TCC and MBC showed excellent applicability for the studied samples, in addition to having advantages such as low cost instrumentation, analytical fast response, high sensitivity and selectivity. / Triclocarban (TCC) é um bactericida e fungicida amplamente utilizado em produtos de higiene pessoal, enquanto que o carbendazim (MBC) é um fungicida muito utilizado em culturas de cereais e numa grande variedade de frutas e vegetais, e ambos são considerados contaminantes ambientais. Nesse trabalho, propõe-se o estudo da oxidação e determinação do TCC utilizando eletrodo de carbono vítreo (ECV) e o uso de um eletrodo de pasta de carbono modificado com nanotubos de carbono de múltiplas paredes funcionalizado (EPC-NTCPMF) para determinação de MBC. A detecção eletroquímica de TCC e MBC foi estudada utilizando diferentes técnicas voltamétricas sobre uma ampla faixa de pH e a determinação foi realizada em amostras de sabonetes para TCC e em água potável em baixas concentrações para os dois contaminantes. Para TCC, foram observados seis processos de oxidação, entretanto, o processo correspondente ao pico P1 apresentou maior sensibilidade e seletividade em tampão acetato pH 5,4, portanto, foi utilizado para o desenvolvimento das metodologias voltamétricas, VOQ direta e VOQ com redissolução adsortiva. Para a VOQ com redissolução adsortiva, a faixa de resposta linear foi de 1,8 a 21 × 10-9 mol L-1 com limite de detecção (LD) de 3,2 × 10-10 mol L-1, 1.000 vezes menor do que o LD obtido por VOQ direta. O método de redissolução adsortiva apresentou níveis satisfatórios de repetibilidade, 4,1% e reprodutibilidade, 5,4% e foi aplicado para determinação de TCC em amostras de sabonetes, obtendo uma recuperação média de 95,3% e água potável com uma média de recuperação aparente de 95,4%. O MBC apresentou um pico de oxidação principal, quase reversível e a maior sensibilidade foi alcançada em H2SO4, pH 1,0, sobre o EPC-NTCPMF, utilizando VOQ. A faixa de resposta linear está entre 3 e 150 × 10-10 mol L-1 com LD de 1,1 × 10-11 mol L-1. O método desenvolvido apresentou níveis satisfatórios de repetibilidade, 4,6% e reprodutibilidade, 6,2% e foi aplicado para determinação de MBC em amostras de água potável, obtendo-se valor médio de recuperação aparente de 95,6%. Os resultados obtidos no desenvolvimento dos métodos para determinação de TCC e MBC demonstraram excelente aplicabilidade para as amostras estudadas, além de apresentarem vantagens como instrumentação de baixo custo, rápida resposta analítica, elevada sensibilidade e seletividade.

Page generated in 0.0314 seconds