• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 2
  • Tagged with
  • 24
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nitrogen Removal in Drinking Water Treatment - A Combination of Zeolite Sorption and the Anammox-Process

Eberle, Stephan Martin 28 July 2023 (has links)
Wasserknappheit und verminderte Wasserqualität sind Folgen des Klimawandels und zu-nehmender menschlichen Aktivitäten in der Landwirtschaft. Um den weltweiten Nahrungsmittelbedarf zu decken, ist der Einsatz von Stickstoffdüngern (hauptsächlich in Form von NH4+) notwendig, um die Qualität und den Ertrag von Nutzpflanzen zu steigern. Eine wachsende Weltbevölkerung macht einen verstärkten Einsatz von Stickstoffdüngern in der Landwirtschaft erforderlich, was zu einem erhöhten Eintrag von reaktivem Stickstoff in den Boden und das Grundwasser führt. Zusammen mit Abwassereinleitungen aus Haus-halten und Industrie in die Umwelt ist die Landwirtschaft Schätzungen zufolge der Hauptverschmutzer von Trinkwasserquellen. Neben Vermeidungs- und Verminderungsstrategien ist die Entwicklung innovativer Technologien zur Entfernung von Stickstoffverbindungen aus Trinkwasserquellen ein vielversprechender Ansatz zur Lösung dieses Problems. Diese Arbeit zeigt die Machbarkeit eines kombinierten Zeolith- und Anammox-Verfahrens zur Entfernung von Stickstoffverbindungen in einer grundwasserähnlichen Matrix für die Trinkwasseraufbereitung auf. Unter Verwendung von natürlichen Zeolithe (Klinoptilolith) als Sorbentien (für NH4+) und als Biofilmträger (für Anammox Bakterien) in einem Festbett-Biofilter wurde ein hocheffizienter, kostensparender, kompakter und wartungsarmer Prozess für dezentrale Anwendungen demonstriert. Darüber hinaus wurden in einer technischen und wirtschaftlichen Bewertung die Chancen und Risiken dieses Verfahrens für die Trinkwasseraufbereitung aufgezeigt. Der Einfluss von Schlüsselparametern auf die Sorption von NH4+ an natürlichen Zeolithe ergab eine hohe NH4+-Selektivität (NH4+ > K+ > Na+ > Mg2+ > Ca2+), hohe Sorptionskapazitäten (bis zu 21.3 mg(NH4+)/g) und hohe Entfernungsleistungen (bis zu 99 %). Untersuchungen in Multisorbat- und natürlichen Wassermatrices ergaben, dass die Konzentrationen von K+ und gelöstem organischem Kohlenstoff (DOC) den größten Einfluss auf die Sorption von NH4+ haben. Die Gleichgewichtsbeladung wurde dabei um bis zu 8% verringert. Der Einfluss von Anionen kann in Grundwasser typischen Konzentrationen bei pH-Werten oberhalb des pHPZC (Point of Zero Charge) vernachlässigt werden. Der pHPZC konnte zwischen pH 6.24 und pH 6.47 bestimmt werden. Zwischen pH 5 und pH 7 wurde eine maximale NH4+-Entfernungsleistung festgestellt, wohingegen aufgrund eines erhöhten Anteils an nicht sorbierbarem NH3(aq) ab pH ≥ 8 die Entfernungsleistung stark abnahm. Bei einer NH4+-Konzentration von 12.8 mg/L konnte der zugrundeliegende Sorptionsmechanismus auf den Ionenaustausch zurückgeführt werden (R² = 0,997). NH4+ beladene Zeolithe ließen sich am besten mit einer K+-Salzlösung regenerieren. Experimentell ermittelte Durchbruchskurven und eine zweifaktorielle Varianzanalyse bestätigten einen starken Einfluss der K+- und DOC-Konzentrationen auf den Durchbruch von NH4+ in natürlichen Wassermatrices. Bei einem Durchbruch von 50% wurde mit dem Einsatz von Elbewasser die Anzahl der behandelten Bettvolumina (BVs) um 69% reduziert. Darüber hinaus wurden die NH4+-Durchbruchskurven mit und ohne den Einfluss von K+ in Reinstwasser sowohl mit dem Linear Driving Force (LDF)- als auch mit dem Thomas-Modell erfolgreich modelliert und durch experimentelle Daten validiert. Die Verwendung solcher Modelle ist ein vielversprechendes Instrument, um zeitaufwändige und umfangreiche Untersuchungen im Labor und im Feld zu reduzieren. Um das Anammox-Verfahren erfolgreich etablieren zu können ist ein stabiler Betrieb der partiellen Nitritation (PN) zur Regulierung des erforderlichen stöchiometrischen NO2-/NH4+-Verhältnisses (1.32:1) entscheidend. Vorläufige Untersuchungen mit einem Fest-bett-Biofilter und einem Sequencing-Batch-Reaktor (SBR) zeigten, dass die folgenden Faktoren bei der Anwendung einer PN berücksichtigt werden müssen: (1) komplexe Wechselbeziehungen zwischen mikrobiellen Gemeinschaften mit unterschiedlichen Substratanforderungen, synergetische/kompetitive Wechselwirkungen, inhibierende Prozesse, und Stoffwechselprodukte; und (2) die Notwendigkeit, verschiedene Inhibierungsstrategien zu etablieren, um die Aktivität NO2- oxidierender Bakterien (NOB) zu unterdrücken. Es ist entscheidend, einen geschichteten und stabilen Biofilm zu etablieren, bevor eine PN unter Grundwasserbedingungen mit erhöhten Temperaturen und hohen NH4+-Konzentrationen eingesetzt wird. Das kombinierte Zeolith- und Anammox-Verfahren wurde in einem sequentiellen Zeolith-Anammox-Biofilter untersucht. Trotz weitaus niedrigerer Substratkonzentrationen und einer 8-fach höheren Filtergeschwindigkeit wurden vergleichbare Entfernungsleistungen für NH4+ (86%) und NO2- (76%) wie mit ähnlichen Zeolith- Anammox-Systemen für die Abwasseraufbereitung ermittelt. Die Entfernungsleistungen für NH4+ und NO2- konnten durch einen Vergleich ihrer Halbwertszeiten mit der effektiven hydraulischen Aufenthaltsdauer im Biofilter bestätigt werden. Die Entfernung von NH4+ erfolgte aufgrund der Sorption über Zeolithe und des Anammox-Stoffwechsel wesentlich schneller als für NO2-, deren Entfernung lediglich auf den Anammox-Stoffwechsel zurückführbar ist. Sowohl die ermittelten Halbwertszeiten als auch das von der Filterhöhe abhängige NO2-/NH4+-Verhältnis konnte eine schnellere NH4+-Entfernung bestätigen. Die Grenzwerte für NO2- der Weltgesundheitsorganisation (WHO: 3 mg/L) und der Vereinigten Staaten von Amerika (USA: 3.2 mg/L)) wurden bei Filtergeschwindigkeiten von 0.032 m/h und 0.043 m/h eingehalten. Bei 0.032 m/h und 0.043 m/h wurden die NH4+-Grenzwerte für China (0.6 mg/L) und Deutschland (0.5 mg/L) leicht überschritten. Durch eine Korrelation der NH4+- und NO2--Entfernung mit der elektrischen Leitfähigkeit konnte darüber hinaus bei allen untersuchten Filtergeschwindigkeiten ein vereinfachtes Verfahren zur Prozessüberwachung demonstriert werden. Eine technisch-wirtschaftliche Bewertung ergab die höchste technische Wertigkeit (X) für das Ionenaustauschverfahren mit Zeolithe (X: 0.79), gefolgt vom Nitrifikationsverfahren (X: 0.68) und dem Verfahren der partiellen Nitritation/Anammox (PN/A) (X: 0.52). Das Ionen-austauschverfahren zeichnet sich dabei vor allem durch eine einfache Handhabung und Anpassung hinsichtlich schwankender NH4+-Konzentrationen im Zulauf sowie eine hohe Betriebssicherheit aus. Dagegen sind vergleichsweise lange Etablierungszeiten, eine un-sichere Betriebssicherheit und eine hohe verfahrenstechnische Komplexität für das PN/A-Verfahren zu erwarten. Die Gesamtkosten jedes Verfahrens wurden unter Berücksichtigung der Anlagengröße, lokaler Strompreise und unterschiedlicher NH4+-Konzentrationen im Zulauf über einen Zeitraum von 20 Jahren berechnet. Auf Grundlage dieser Berechnung können die folgenden Empfehlungen für eine dezentrale Trinkwasseraufbereitung ausgesprochen werden: (1) Das Ionenaustauschverfahren kann für NH4+-Konzentrationen bis zu 21 mg/L empfohlen werden; (2) das PN/A-Verfahren wird bei höheren NH4+-Konzentrationen wirtschaftlicher; und (3) das Nitrifikationsverfahren weist ab einer NH4+-Konzentration von ≥ 14 mg/L im Zulauf eine ungünstige Wirtschaftlichkeit auf, da eine zusätzliche Denitrifikationsstufe eingeplant werden muss um den NO3- Grenzwert von 50 mg/L der WHO und von Deutschland einzuhalten. Werden die Berechnungen mit einem niedrigeren KCl-Preis wiederholt, kann das Ionenaustauschverfahren bis zu einer NH4+-Konzentration von 60 mg/L empfohlen werden. Das PN/A-Verfahren stellt bei NH4+-Konzentrationen ≥ 60 mg/L das wirtschaftlichere Verfahren dar. Insgesamt ist das kombinierte Zeolith- und Anammox-Verfahren ein vielversprechendes Verfahren zur Entfernung von Stickstoffverbindungen in dezentralen Anwendungen für die Trinkwasseraufbereitung in Schwellen- und Entwicklungsländern des globalen Südens. Insbesondere dort, wo erhöhte Temperaturen und hohe NH4+-Konzentrationen in Trinkwasserquellen zu finden sind.:1. Introduction ................................................................................................................. 1 2. Topic and Objective of the Thesis ............................................................................. 3 3. Background and Literature Review ........................................................................... 5 3.1 General Aspects about the Global Nitrogen Cycle ............................................ 5 3.1.1 Nitrogen Reservoirs and Anthropogenic Activities ........................................... 5 3.1.2 Nitrogen Cycle in Riverbank Filtration and Groundwater ................................. 7 3.1.3 Ecological Relevance and Physiological Effects of Nitrogen Compounds ..... 10 3.2 Ammonium Removal Processes – Current State of Knowledge .................... 12 3.2.1 Distinction: Drinking Water vs. Wastewater Treatment .................................. 13 3.2.2 Zeolites: Occurrence, Characteristics and Application ................................... 17 3.2.3 Partial Nitritation and Anammox ..................................................................... 20 4. Results and Discussion ............................................................................................ 25 4.1 Publication 1: Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water ............................................................ 25 4.2 Publication 2: Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling .................................................................................. 48 4.3 Preliminary Investigations to the Partial Nitritation ........................................ 66 4.3.1 Material and Methods .................................................................................... 66 4.3.2 Results and Discussion .................................................................................. 70 4.3.3 Conclusions ................................................................................................... 77 4.4 Publication 3: A Sequential Anammox Zeolite-Biofilter for the Removal of Nitrogen Compounds from Drinking Water ............................................................... 79 4.5 Technical-Economic Evaluation ........................................................................ 99 4.5.1 Material and Methods .................................................................................... 99 4.5.2 Results and Discussion ................................................................................ 103 4.5.3 Conclusions ................................................................................................. 114 5. Summary and General Conclusions ...................................................................... 116 6. Outlook ..................................................................................................................... 119 References ..................................................................................................................... 122 List of Tables ................................................................................................................. 139 List of Figures ................................................................................................................ 141 List of Abbreviations ..................................................................................................... 144 List of Formular ............................................................................................................. 146 Appendix ........................................................................................................................ 147 A-1 Supporting Information: Section 3 .................................................................. 147 A-2 Supporting Information: Section 4 .................................................................. 149 A-2.1 Publication 1: Granular Natural Zeolite: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water ............................................................ 149 A-2.2 Publication 2: Natural Zeolites for the Sorption of Ammonium: Breakthrough Evaluation and its Modeling ...................................................................................... 157 A-2.3 Preliminary Investigations to Partial Nitritation ............................................. 162 A-2.4 Publication 3: A Sequential Anammox Zeolite-Biofilter for the Removal of Nitrogen Compounds from Drinking Water ............................................................... 168 A-2.5 Technical-Economic Evaluation ................................................................... 179 Journal Articles and Conference Contributions ......................................................... 200 Acknowledgements ....................................................................................................... 201 Declaration ..................................................................................................................... 202
22

Zur Behandlung und Verwertung von Rückständen aus der Oberflächenwasseraufbereitung

Reißmann, Florian 06 May 2009 (has links)
Bei der Aufbereitung von Rohwässern zu Trinkwasser fallen in der Regel unvermeidbare Rückstände an, die den gesetzlichen Bestimmungen entsprechend entsorgt werden müssen. Schlammhaltige Wässer, die den größten Anteil an Wasserwerksrückständen einnehmen, entstehen bei der Spülung von Filtern und enthalten nahezu alle aus dem Rohwasser entfernten Stoffe und nicht im Trinkwasser verbleibende Aufbereitungschemikalien. Während früher in vielen Wasserwerken Teile des schlammhaltigen Filterspülwassers nach einem Sedimentationsvorgang wieder in den Aufbereitungsprozess zurückgeführt wurden, ist dies in Deutschland auf Grund einer möglichen Beeinträchtigung der Trinkwasserqualität bei mikrobiologisch belasteten Wässern (z. B. Oberflächenwasser) ohne eine adäquate Behandlung (z. B. Ultrafiltration) nicht mehr erlaubt. Somit müssen schlammhaltige Filterspülwässer anderweitig entsorgt werden, z. B. durch eine Einleitung in die Kanalisation. Die dabei auftretenden Auswirkungen auf Abwasserbehandlungsanlagen sind noch nicht ausreichend bekannt. In der vorliegenden Arbeit werden unterschiedliche Ultrafiltrationsmodule (Kapillarmembranmodul und getauchtes Modul) hinsichtlich ihrer Eignung zur Aufbereitung aluminiumhaltiger schlammhaltiger Filterspülwässer und damit zur Rückführung des entstehenden Filtrates in den Aufbereitungsprozess untersucht. Die grundsätzliche Eignung beider Modulsysteme wird nachgewiesen. Bei Verwendung von getauchten Modulen kann auf eine vorangehende Sedimentationsanlage verzichtet werden. Als kritisch muss unabhängig vom gewählten Modulkonzept die Entsorgung des anfallenden Retentates angesehen werden, da die gesetzlich vorgeschriebenen Grenzwerte der Indirekteinleitung für mehrere Parameter nicht eingehalten werden. Bilanzierungen der relevanten Schadstoffe ergeben, dass der Schadstoffeintrag überwiegend diffus mit dem Rohwasser in das Wasserwerk erfolgt. Zur Untersuchung von Auswirkungen der Einleitung aluminiumhaltiger schlammhaltiger Filterspülwässer aus der Oberflächenwasseraufbereitung auf die Abwasserbehandlung wurden labortechnische Versuche zur Ermittlung des Phosphatadsorptionspotenzials durchgeführt. Neben der Abhängigkeit der Phosphatadsorptionskapazität vom pH-Wert wurde der Einfluss der Feststoffkonzentration des schlammhaltigen Filterspülwassers in Versuchen mit Modellwasser nachgewiesen. Eine Erhöhung der Feststoffkonzentration wirkt einer möglichst hohen Ausnutzung des Adsorptionspotenzials entgegen. Während für die Ultrafiltrationsbehandlung gegenüber der Indirekteinleitung ein Kostenvorteil ermittelt wird, ist die für die Nutzung des Phosphatadsorptionsanteils verfügbare Schlammmenge für einen alleinigen Einsatz in der Kläranlage bei gleichen Einzugsgebieten nicht ausreichend. / In most water treatment plants (WTPs), during the water purification process, residuals are generated that have to be disposed according to current regulations. Most of the residuals are derived from filter backwash processes (i. e. spent filter backwash water, SFBW) and contain substances that are removed from the raw water. In addition, in the spent filter backwash water, chemicals can be found that are required for the operation of the water treatment process and do not remain in the drinking water. Over recent decades, SFBW has been returned to the beginning of the water treatment plant (WTP) after a sedimentation process in order to reduce the amount of water being discharged. Concerns over the recycling of microorganisms, of heavy metals or precursors for disinfection by-products, have led to a significant reduction of the number of WTPs that directly return filter backwash water to the water treatment process. According to German technical standards, the reuse of SFBW might only be possible after the application of groundwater infiltration or an equivalent technique. Because of an almost complete recovery of particles and microorganisms, ultrafiltration treatment is a proven alternative to groundwater recharge of SFBW. In this work, different ultrafiltration modules for the treatment and reuse of SFBW are compared. Capillary as well as submerged membrane modules are suitable for the treatment of SFBW. If submerged membrane modules are used, no sedimentation period prior to ultrafiltration treatment is necessary. As a consequence of the accumulation of particulate matter including heavy metals and other compounds in the retentate during ultrafiltration treatment, threshold values of several regulations cannot be met, and either the discharge of retentate into the sewer will be charged or alternative disposal options must be considered. Mass balances for an entire WTP showed most of these contaminants to originate from non-point sources in the watershed. Lab-scale experiments are performed for the examination of the phosphate adsorption potential of SFBW derived from surface water treatment using aluminum-based coagulants. Besides a strong influence of the pH-value present in the SFBW, an influence of the TSS-concentration of SFBW on phosphate adsorption capacity could be demonstrated. Elevated TSS-concentrations resulted in a lower phosphate adsorption capacity of the investigated SFBW. While ultrafiltration treatment with subsequent reuse of SFBW might be cheaper than the discharge to the sewer system, the amount of SFBW required for a complete phosphate removal in the wastewater treatment plant is to large and therefore, no economic advantage of phosphate adsorption could be demonstrated
23

Entwicklung und Validierung eines Labor-Schnelltests zur Beurteilung der Adsorbierbarkeit von organischen Einzelstoffen an Aktivkohle / Development and validation of a rapid lab scale test for the evaluation of the adsorbility of organic single components on activated carbon

Marcus, Patrick 02 December 2005 (has links) (PDF)
Zur Entfernung von anthropogenen organischen Spurenstoffen werden bei der Wasseraufbereitung sehr oft Aktivkohle-Festbettadsorber eingesetzt. Dabei konkurrieren die organischen Einzelstoffe während des Adsorptionsprozesses mit dem adsorbierbaren Anteil der natürlichen Wasserinhaltsstoffe um die aktiven Zentren der Aktivkohle. Durch dieses Konkurrenzverhalten ist es sehr schwierig, für einen zu untersuchenden organischen Einzelstoff seine Entfernbarkeit mittels Aktivkohle abzuschätzen. Gleichzeitig werden der Liste der aus dem Wasser zu entfernenden Substanzen ständig neue Stoffe hinzugefügt. Deshalb wäre es wünschenswert, eine schnelle, einfache und kostengünstige Methode zu haben, mit der unter wasserwerksnahen Bedingungen die Entfernbarkeit eines organischen Einzelstoffs bei der Aktivkohlefiltration in einem Großfilter bestimmt werden kann. Da die bisher entwickelten Methoden nicht in der Lage sind, all diese Vorgaben zu erfüllen, sollte im Rahmen dieser Arbeit eine neue Methode zur Beurteilung der Entfernbarkeit organischer Einzelstoffe mittels Aktivkohlefiltration entwickelt werden. Es wurde ein Aktivkohle-Kleinfiltertest konzipiert und aufgebaut, der eine Einstufung von organischen Substanzen, die auf den Rückhaltepotenzialen von Aktivkohlefiltern basiert, ermöglichen soll. Um die Einstufung nach Sontheimer in trinkwasserrelevante und nicht-trinkwasserrelevante Substanzen vornehmen zu können, wurde ein spezielles Bewertungskonzept entwickelt, das auf die Aktivkohle-Kleinfiltertest-Durchbruchskurven der verschiedenen organischen Einzelstoffe angewendet werden kann. Da der Kleinfiltertest einfach und kostengünstig durchzuführen sein sollte, wurde bei der Auslegung des gesamten Versuchaufbaus darauf geachtet, dass nur Zukaufteile oder Teile verwendet wurden, die sich aus Glas fertigen ließen. Die Versuchsparameter wurden so gewählt, dass die Versuchsvorbereitung und -durchführung nicht zu zeit- und arbeitsintensiv ist. Als Standard für die Versuchsdurchführung wurde eine handelsübliche und in der Wasseraufbereitung weitverbreitete Kohlesorte (F 300) und als Matrix Leitungswasser verwendet. Die Filterzulaufkonzentration des organischen Einzelstoffs wurde auf 500 µg/l festgelegt. Durch verschiedene Vorversuche konnte gezeigt werden, dass der Aktivkohle-Kleinfilter die kinetischen Vorgaben erfüllt und es zu keinen unerwünschten Effekten wie Kanalbildung oder Randeinflüssen kommt. Die Validierung der neu entwickelten Versuchsmethode ergab, dass die Kleinfilter-Durchbruchskurven von Substanzen, deren Entfernbarkeit in Aktivkohlefiltern von Wasserwerken bekannt ist (1,1,1-Trichlorethan, EDTA, Trichlorethen, Atrazin, Isoproturon), plausibel sind. Die Durchbruchsreihenfolge und der Durchbruchsbeginn der einzelnen Substanzen im Kleinfilter waren identisch mit denen in einem Großfilter. Zudem war die Trennschärfe des Kleinfilters für die schlecht (1,1,1-Trichlorethan und EDTA), mäßig (Trichlorethen) und gut (Atrazin und Isoproturon) zu entfernenden Substanzen ausreichend, so dass eine Einstufung in Entfernbarkeitsklassen ohne Probleme vorgenommen werden konnte. Um die organischen Einzelstoffe aufgrund der mit dem Kleinfiltertest aufgenommenen Durchbruchskurven einstufen zu können, musste ein Kriterium für die Trinkwasserrelevanz nach Sontheimer gefunden werden, das sich direkt aus den Durchbruchskurven ableiten lässt. Es bot sich an, eine bestimmte Ablaufkonzentration, die nach einer bestimmten Versuchslaufzeit erreicht wird, als Kriterium festzulegen. Durch die Durchbruchskurven der Stoffe, die bei der Validierung des Kleinfiltertests zum Einsatz kamen, wurde das Kriterium bei einem 10%igen Durchbruch nach 15000 BVT festgelegt. Mit Hilfe des Bewertungskonzepts wurden verschiedene organische Einzelstoffe, deren Entfernbarkeit in einem Wasserwerks-Aktivkohleadsorber nicht oder nur unzureichend bekannt war, anhand der jeweiligen Kleinfilter-Durchbruchskurven eingestuft (MTBE, ETBE, Amidotrizoesäure, Iopamidol).
24

Entwicklung und Validierung eines Labor-Schnelltests zur Beurteilung der Adsorbierbarkeit von organischen Einzelstoffen an Aktivkohle

Marcus, Patrick 24 June 2005 (has links)
Zur Entfernung von anthropogenen organischen Spurenstoffen werden bei der Wasseraufbereitung sehr oft Aktivkohle-Festbettadsorber eingesetzt. Dabei konkurrieren die organischen Einzelstoffe während des Adsorptionsprozesses mit dem adsorbierbaren Anteil der natürlichen Wasserinhaltsstoffe um die aktiven Zentren der Aktivkohle. Durch dieses Konkurrenzverhalten ist es sehr schwierig, für einen zu untersuchenden organischen Einzelstoff seine Entfernbarkeit mittels Aktivkohle abzuschätzen. Gleichzeitig werden der Liste der aus dem Wasser zu entfernenden Substanzen ständig neue Stoffe hinzugefügt. Deshalb wäre es wünschenswert, eine schnelle, einfache und kostengünstige Methode zu haben, mit der unter wasserwerksnahen Bedingungen die Entfernbarkeit eines organischen Einzelstoffs bei der Aktivkohlefiltration in einem Großfilter bestimmt werden kann. Da die bisher entwickelten Methoden nicht in der Lage sind, all diese Vorgaben zu erfüllen, sollte im Rahmen dieser Arbeit eine neue Methode zur Beurteilung der Entfernbarkeit organischer Einzelstoffe mittels Aktivkohlefiltration entwickelt werden. Es wurde ein Aktivkohle-Kleinfiltertest konzipiert und aufgebaut, der eine Einstufung von organischen Substanzen, die auf den Rückhaltepotenzialen von Aktivkohlefiltern basiert, ermöglichen soll. Um die Einstufung nach Sontheimer in trinkwasserrelevante und nicht-trinkwasserrelevante Substanzen vornehmen zu können, wurde ein spezielles Bewertungskonzept entwickelt, das auf die Aktivkohle-Kleinfiltertest-Durchbruchskurven der verschiedenen organischen Einzelstoffe angewendet werden kann. Da der Kleinfiltertest einfach und kostengünstig durchzuführen sein sollte, wurde bei der Auslegung des gesamten Versuchaufbaus darauf geachtet, dass nur Zukaufteile oder Teile verwendet wurden, die sich aus Glas fertigen ließen. Die Versuchsparameter wurden so gewählt, dass die Versuchsvorbereitung und -durchführung nicht zu zeit- und arbeitsintensiv ist. Als Standard für die Versuchsdurchführung wurde eine handelsübliche und in der Wasseraufbereitung weitverbreitete Kohlesorte (F 300) und als Matrix Leitungswasser verwendet. Die Filterzulaufkonzentration des organischen Einzelstoffs wurde auf 500 µg/l festgelegt. Durch verschiedene Vorversuche konnte gezeigt werden, dass der Aktivkohle-Kleinfilter die kinetischen Vorgaben erfüllt und es zu keinen unerwünschten Effekten wie Kanalbildung oder Randeinflüssen kommt. Die Validierung der neu entwickelten Versuchsmethode ergab, dass die Kleinfilter-Durchbruchskurven von Substanzen, deren Entfernbarkeit in Aktivkohlefiltern von Wasserwerken bekannt ist (1,1,1-Trichlorethan, EDTA, Trichlorethen, Atrazin, Isoproturon), plausibel sind. Die Durchbruchsreihenfolge und der Durchbruchsbeginn der einzelnen Substanzen im Kleinfilter waren identisch mit denen in einem Großfilter. Zudem war die Trennschärfe des Kleinfilters für die schlecht (1,1,1-Trichlorethan und EDTA), mäßig (Trichlorethen) und gut (Atrazin und Isoproturon) zu entfernenden Substanzen ausreichend, so dass eine Einstufung in Entfernbarkeitsklassen ohne Probleme vorgenommen werden konnte. Um die organischen Einzelstoffe aufgrund der mit dem Kleinfiltertest aufgenommenen Durchbruchskurven einstufen zu können, musste ein Kriterium für die Trinkwasserrelevanz nach Sontheimer gefunden werden, das sich direkt aus den Durchbruchskurven ableiten lässt. Es bot sich an, eine bestimmte Ablaufkonzentration, die nach einer bestimmten Versuchslaufzeit erreicht wird, als Kriterium festzulegen. Durch die Durchbruchskurven der Stoffe, die bei der Validierung des Kleinfiltertests zum Einsatz kamen, wurde das Kriterium bei einem 10%igen Durchbruch nach 15000 BVT festgelegt. Mit Hilfe des Bewertungskonzepts wurden verschiedene organische Einzelstoffe, deren Entfernbarkeit in einem Wasserwerks-Aktivkohleadsorber nicht oder nur unzureichend bekannt war, anhand der jeweiligen Kleinfilter-Durchbruchskurven eingestuft (MTBE, ETBE, Amidotrizoesäure, Iopamidol).

Page generated in 0.0684 seconds