Spelling suggestions: "subject:"triple systems."" "subject:"périple systems.""
11 |
Planejamentos combinatórios construindo sistemas triplos de steinerBarbosa, Enio Perez Rodrigues 26 August 2011 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-16T12:52:36Z
No. of bitstreams: 2
Dissertação EnioPerez.pdf: 2190954 bytes, checksum: 8abd6c2cd31279e28971c632f6ed378b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-16T14:10:30Z (GMT) No. of bitstreams: 2
Dissertação EnioPerez.pdf: 2190954 bytes, checksum: 8abd6c2cd31279e28971c632f6ed378b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-16T14:10:30Z (GMT). No. of bitstreams: 2
Dissertação EnioPerez.pdf: 2190954 bytes, checksum: 8abd6c2cd31279e28971c632f6ed378b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2011-08-26 / Intuitively, the basic idea of Design Theory consists of a way to select subsets, also called
blocks, of a finite set, so that some properties are satisfied. The more general case are the
blocks designs. A PBD is an ordered pair (S;B), where S is a finite set of symbols, and B
is a collection of subsets of S called blocks, such that each pair of distinct elements of S
occur together in exactly one block of B. A Steiner Triple System is a particular case of a
PBD, where every block has size only 3, being called triples. The main focus is in building
technology systems. By resolvability is discussed as a Steiner Triple Systems is resolvable,
and when it is not resolvable. This theory has several applications, eg, embeddings and
even problems related to computational complexity. / Intuitivamente, a idéia básica de um Planejamento Combinatório consiste em uma
maneira de selecionar subconjuntos, também chamados de blocos, de um conjunto finito,
de modo que algumas propriedades especificadas sejam satisfeitas. O caso mais geral são
os planejamentos balanceados. Um PBD é um par ordenado (S;B), onde S é um conjunto
finito de símbolos, e B é uma coleção de subconjuntos de S chamados blocos, tais que cada
par de elementos distintos de S ocorrem juntos em exatamente um bloco de B. Um Sistema
Triplo de Steiner é um caso particular de um PBD, em que todos os blocos tem tamanho
único 3, sendo chamados de triplas. O foco principal está nas técnicas de construção dos
sistemas. Por meio da resolubilidade se discute quando um Sistema Triplo de Steiner é
resolvível e quando não é resolvível. Esta teoria possui várias aplicações, por exemplo:
imersões e até mesmo problemas relacionados à complexidade computacional.
|
12 |
Critical Sets in Latin Squares and Associated StructuresBean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
|
13 |
Critical Sets in Latin Squares and Associated StructuresBean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
|
14 |
Critical Sets in Latin Squares and Associated StructuresBean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
|
15 |
[en] CONVEX ANALYSIS AND LIFT-AND-PROJECT METHODS FOR INTEGER PROGRAMMING / [es] ANÁLISIS CONVEXA Y MÉTODOS LIFT-AND-PROJECT PARA PROGRAMACIÓN ENTERA / [pt] ANÁLISE CONVEXA E MÉTODOS LIFT-AND-PROJECT PARA PROGRAMAÇÃO INTEIRAPABLO ANDRES REY 06 August 2001 (has links)
[pt] Algoritmos para a resolução de problemas de programação
mista 0-1 gerais baseados em cortes derivados dos métodos
lift-and-project, tem se mostrado bastante eficientes na
prática. Estes cortes são gerados resolvendo um problema
que depende de uma certa normalização. Desde um ponto de
vista teórico, o bom comportamento destes algoritmos não
foi completamente compreendido, especialmente no que diz
respeito à normalização. Neste trabalho consideramos
normalizações gerais definidas por um conjunto convexo
fechado arbitrário, estendendo assim a análise teórica
desenvolvida nos anos noventa. Apresentamos um marco
teórico que abarca todas as normalizações previamente
estudadas e introduzimos novas normalizações, analisando
as propriedades dos cortes associados.Introduzimos também
uma nova fórmula de atualização do parâmetro proximal
para uma variante dos métodos de feixes. Estes métodos
são bem conhecidos pela sua eficiência na resolução de
problemas de otimização não diferenciável. Por último,
propomos uma metodologia para eliminr soluções
redundantes de programas inteiros combinatórios. Nossa
proposta baseia-se na utilização da informação de
simetria do problema, eliminam a simetria sem prejudicar
a solução do problema inteiro. / [en] Algorithms for general 0-1 mixed integer programs can be
successfully developed by using lift-and-project methods to
generate cuts. Cuts are generated by solving a cut-
generation-program that depends on a certain normalization.
From a theoretical point of view, the good numerical
behavior of these cuts is not completely understood yet,
specially, concerning to the normalization chosen. We
consider a general normalization given by an arbitrary
closed convex set, extending the theory developed in the
90's. We present a theoretical framework covering a wide
group of already known normalizations. We also introduce
new normalizations and analyze the properties of the
associated cuts. In this work, we also propose a new
updating rule for the prox parameter of a variant of the
proximal bundle methods, making use of all the information
available at each iteration. Proximal bundle methods are
well known for their efficiency in nondifferentiable
optimization. Finally, we introduce a way to eliminate
redundant solutions ( due to geometrical symmetries ) of
combinatorial integer program. This can be done by using
the information about the problem symmetry in order to
generate inequalities, which added to the formulation of
the problem, eliminate this symmetry without affecting
solution of the integer problem. / [es] Los algoritmos para la resolución de problemas de programación mixta 0-1 generales que utilizan
cortes derivados de los métodos lift-and-project, se han mostrado bastante eficientes en la práctica.
Estos cortes se generan resolviendo un problema que depende de una cierta normalización. Desde el
punto de vista teórico, el buen comportamiento de estos algoritmos no fue completamente
comprendido, especialmente respecto a la normalización. En este trabajo consideramos
normalizaciones generales definidas por un conjunto convexo cerrado arbitrario, extendiendo así el
análisis teórico desarrollado en los años noventa. Presentamos un marco teórico que abarca todas las
normalizaciones previamente estudiadas e introducimos nuevas normalizaciones, analizando las
propiedades de los cortes asociados. Introducimos una nueva fórmula de actualización del parámetro
de. Estoss métodos son bien conocidos por su eficiencia en la resolución de problemas de
optimización no diferenciable. Por último, proponemos una metodología para eliminar soluciones
redundantes de programas enteros combinatorios. Nuestra propuesta se basa en la utilización de la
información de simetría del problema, eliminan la simetría sin perjudicar la solución del problema
entero.
|
Page generated in 0.216 seconds