• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton / Topological triviality in germs of hypersufaces and Newton polyhedra

Silva, Gabriela Castro Vieira da 26 January 2006 (has links)
Uma das questões mais importantes em Teoria de Singularidades é a determinação de condições que garantam a trivialidade topológica em famílias de germes de funções ou aplicações. Neste trabalho é feito um estudo a fim de descrever condições necessárias e suficientes para a trivialidade topológica em famílias de germes de funções com singularidade isolada. Para isto, são apresentados dois métodos. O primeiro é o de campos de vetores controlados, baseado nos trabalhos de Damon-Gaffney e Yoshinaga. O segundo relaciona invariantes associados às famílias de germes de funções com a trivialidade topológica destas. Em ambos os casos, a principal ferramenta é a construção de poliedros de Newton associados às famílias. / One of the most important questions in Theory of Singularities is the determination of conditions that guarantee the topological triviality in families of germs of functions or mappings. In this work a study is made in order to describe necessaries and sufficients conditions for the topological triviality in families of germs of functions with isolated singularity. For this, two methods are presented. The first one is controlled vectors fields method, based on the works of Damon-Gaffney and Yoshinaga. The second relates invariants associated with families of germs of functions with the topological triviality of these. In both cases, the main tool used is the construction of Newton polyhedra associated with families.
2

Trivialidade topológica em germes de hipersuperfícies e poliedros de Newton / Topological triviality in germs of hypersufaces and Newton polyhedra

Gabriela Castro Vieira da Silva 26 January 2006 (has links)
Uma das questões mais importantes em Teoria de Singularidades é a determinação de condições que garantam a trivialidade topológica em famílias de germes de funções ou aplicações. Neste trabalho é feito um estudo a fim de descrever condições necessárias e suficientes para a trivialidade topológica em famílias de germes de funções com singularidade isolada. Para isto, são apresentados dois métodos. O primeiro é o de campos de vetores controlados, baseado nos trabalhos de Damon-Gaffney e Yoshinaga. O segundo relaciona invariantes associados às famílias de germes de funções com a trivialidade topológica destas. Em ambos os casos, a principal ferramenta é a construção de poliedros de Newton associados às famílias. / One of the most important questions in Theory of Singularities is the determination of conditions that guarantee the topological triviality in families of germs of functions or mappings. In this work a study is made in order to describe necessaries and sufficients conditions for the topological triviality in families of germs of functions with isolated singularity. For this, two methods are presented. The first one is controlled vectors fields method, based on the works of Damon-Gaffney and Yoshinaga. The second relates invariants associated with families of germs of functions with the topological triviality of these. In both cases, the main tool used is the construction of Newton polyhedra associated with families.
3

Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'

Martins, Rodrigo 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
4

Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'

Rodrigo Martins 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
5

Superfícies com singularidades não isoladas / Surfaces with non-isolated singularities

Silva, Otoniel Nogueira da 20 March 2017 (has links)
Neste trabalho, estudamos famílias de curvas genericamente reduzidas. Estendemos para o caso genericamente reduzido alguns resultados conhecidos para famílias de curvas reduzidas como a equivalência entre a Whitney equisingularidade e a resolução simultânea forte da família e a equivalência entre a Whitney equisingularidade e a constância do número de Milnor e da multiplicidade de cada curva Xt da família. Estudamos também a equisingularidade topológica e a Whitney equisingularidade de famílias de superfícies em C3 parametrizadas por germes de aplicações A-finitamente determinados. Em ([51]), Ruas apresentou uma conjectura cujo enunciado diz que se f : (C2, 0) r→ (C3, 0) é um germe de aplicação finitamente determinado, então um desdobramento F a 1-parâmetro de f é topologicamente trivial se, e somente se F é Whitney equisingular se, e somente se o número de Milnor μ(D(ft)) de D(ft) é constante, onde D(ft) é a curva de pontos duplos de ft. Apresentamos contra-exemplos que mostram como esta conjectura pode falhar. Mostramos também uma classe de famílias de germes aplicações ft : (C2, 0) → (C3, 0) em que a conjectura é verdadeira. No caso em que f é homogênea e de coposto 1, mostramos também algumas fórmulas para a multiplicidade da imagem da curva de pontos duplos f(D(f)), o número de Milnor da seção transversal μ1(f(C2)) e o invariante J(f) em termos dos graus de f. Em [44], Nuño-Ballesteros e Jorge Pérez apresentam alguns resultados sobre germes de aplicações f : (Cn, 0) → (C2n-1, 0) com n ≥ 3. Quando f é finitamente determinado, a curva dos pontos duplos D(f) de f tem uma estrutura de curva genericamente reduzida. Apresentamos uma outra forma de abordar alguns problemas descritos em [44] usando resultados sobre curvas genericamente reduzidas. / In this work, we study families of generically reduced curves. We extend to the generically reduced case some results known for families of reduced curves as the equivalence between Whitney equisingularity and strong simultaneous resolution of the family and the equivalence between Whitney equisingularity and the constancy of the Milnor number and the multiplicity of each curve Xt of the family. We also study the topological triviality and the Whitney equisingularity of families of surfaces in C3 parametrized by A-finitely determined map germs. In [51], Ruas presented a conjecture whose statement says that if f : (C2, 0) → (C3, 0) is a finitely determined map germ, then an 1-parameter unfolding F = (ft, t) of f is topological trivial if and only if it is Whitney equisingular if and only if the Milnor number μ(D(ft)) is constant, where D(ft) is the double point curve of ft. We present counter-examples that show how the conjecture can fail. We also show a class of families of map germs ft : (C2, 0) → (C3, 0) in which the conjecture is true. We also give formulas for the multiplicity of the image of the double point curve f(D(f)), the Milnor number of the transversal generic section μ 1f(C2)) and the invariant J(f) in terms of degrees of f in the case in which f is homogeneous and has corank 1. In [44], Nuño-Ballesteros and Jorge Pérez give some results in the case of families of map germs f : (Cn, 0) → (C2n-1, 0) with n ≥ 3. When f is finitely determined, the double point. curve D(f) of f is a generically reduced curve. We present another way of approaching some problems in [44] using results on generically reduced curves.
6

Superfícies com singularidades não isoladas / Surfaces with non-isolated singularities

Otoniel Nogueira da Silva 20 March 2017 (has links)
Neste trabalho, estudamos famílias de curvas genericamente reduzidas. Estendemos para o caso genericamente reduzido alguns resultados conhecidos para famílias de curvas reduzidas como a equivalência entre a Whitney equisingularidade e a resolução simultânea forte da família e a equivalência entre a Whitney equisingularidade e a constância do número de Milnor e da multiplicidade de cada curva Xt da família. Estudamos também a equisingularidade topológica e a Whitney equisingularidade de famílias de superfícies em C3 parametrizadas por germes de aplicações A-finitamente determinados. Em ([51]), Ruas apresentou uma conjectura cujo enunciado diz que se f : (C2, 0) r→ (C3, 0) é um germe de aplicação finitamente determinado, então um desdobramento F a 1-parâmetro de f é topologicamente trivial se, e somente se F é Whitney equisingular se, e somente se o número de Milnor μ(D(ft)) de D(ft) é constante, onde D(ft) é a curva de pontos duplos de ft. Apresentamos contra-exemplos que mostram como esta conjectura pode falhar. Mostramos também uma classe de famílias de germes aplicações ft : (C2, 0) → (C3, 0) em que a conjectura é verdadeira. No caso em que f é homogênea e de coposto 1, mostramos também algumas fórmulas para a multiplicidade da imagem da curva de pontos duplos f(D(f)), o número de Milnor da seção transversal μ1(f(C2)) e o invariante J(f) em termos dos graus de f. Em [44], Nuño-Ballesteros e Jorge Pérez apresentam alguns resultados sobre germes de aplicações f : (Cn, 0) → (C2n-1, 0) com n ≥ 3. Quando f é finitamente determinado, a curva dos pontos duplos D(f) de f tem uma estrutura de curva genericamente reduzida. Apresentamos uma outra forma de abordar alguns problemas descritos em [44] usando resultados sobre curvas genericamente reduzidas. / In this work, we study families of generically reduced curves. We extend to the generically reduced case some results known for families of reduced curves as the equivalence between Whitney equisingularity and strong simultaneous resolution of the family and the equivalence between Whitney equisingularity and the constancy of the Milnor number and the multiplicity of each curve Xt of the family. We also study the topological triviality and the Whitney equisingularity of families of surfaces in C3 parametrized by A-finitely determined map germs. In [51], Ruas presented a conjecture whose statement says that if f : (C2, 0) → (C3, 0) is a finitely determined map germ, then an 1-parameter unfolding F = (ft, t) of f is topological trivial if and only if it is Whitney equisingular if and only if the Milnor number μ(D(ft)) is constant, where D(ft) is the double point curve of ft. We present counter-examples that show how the conjecture can fail. We also show a class of families of map germs ft : (C2, 0) → (C3, 0) in which the conjecture is true. We also give formulas for the multiplicity of the image of the double point curve f(D(f)), the Milnor number of the transversal generic section μ 1f(C2)) and the invariant J(f) in terms of degrees of f in the case in which f is homogeneous and has corank 1. In [44], Nuño-Ballesteros and Jorge Pérez give some results in the case of families of map germs f : (Cn, 0) → (C2n-1, 0) with n ≥ 3. When f is finitely determined, the double point. curve D(f) of f is a generically reduced curve. We present another way of approaching some problems in [44] using results on generically reduced curves.
7

Singularidades analíticas reais e complexas / Real and complex analytic singularities

Oliveira, Laís da Silva 28 August 2013 (has links)
Neste projeto apresentamos algumas direções de pesquisa desenvolvidas no estudo da geometria/topologia da singularidade, no ambiente real e complexo, para funções e aplicações polinomiais. Para isso, utilizaremos as ferramentas da teoria de estratificação, técnicas de decomposição Open book, condições de regularidade no sentido Malgrange, t-regularidade, \'rho\'E-regularidade e trivialidade topológica no infinito / On this project we present some research lines developed in the study of the geometry/ topology of singularity, on the real and complex settings, for functions and polynomial mappings. For this, we use tools from stratification theory, techniques of Open Book decomposition, Malgrange regularity condition, t-regularity condition, \'rho\'E-regularity and topological triviality at infinity
8

Singularidades analíticas reais e complexas / Real and complex analytic singularities

Laís da Silva Oliveira 28 August 2013 (has links)
Neste projeto apresentamos algumas direções de pesquisa desenvolvidas no estudo da geometria/topologia da singularidade, no ambiente real e complexo, para funções e aplicações polinomiais. Para isso, utilizaremos as ferramentas da teoria de estratificação, técnicas de decomposição Open book, condições de regularidade no sentido Malgrange, t-regularidade, \'rho\'E-regularidade e trivialidade topológica no infinito / On this project we present some research lines developed in the study of the geometry/ topology of singularity, on the real and complex settings, for functions and polynomial mappings. For this, we use tools from stratification theory, techniques of Open Book decomposition, Malgrange regularity condition, t-regularity condition, \'rho\'E-regularity and topological triviality at infinity

Page generated in 0.0644 seconds