• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'

Martins, Rodrigo 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
2

HÉLICES, CURVAS DE BERTRAND E SUPERFÍCIES REGRADAS / HELICES, BERTRAND CURVES AND RULED SURFACES

Flôres, Marcia Viaro 27 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work is designed to study helices and Bertrand curves. A circular helix is characterized by having constant curvature k 6= 0 and constant torsion t . If the ratio t k is constant, the curve is called generalized helix. A curve g : I −→R3 is called a Bertrand curve if there is another curve g : I −→R3 such that the normal lines of g and g at s ∈ I are equal. Generalized helices and Bertrand curves can be viewed as generalizations of the circular helix. In this work, we obtain important characterizations of these curves. Besides, we also study these curves from the view point of the theory of curves on ruled surfaces. / O presente trabalho destina-se a um estudo sobre hélices e curvas de Bertrand. Uma hélice circular é caracterizada por ter curvatura k 6= 0 e torção t constantes. Se a razão t k for constante, a curva é chamada hélice generalizada. Uma curva g : I −→ R3 é chamada curva de Bertrand se existe uma outra curva g : I −→ R3 tal que as retas normais de g e g em s ∈ I são iguais. Tanto a hélice generalizada como a curva de Bertrand podem ser vistas como generalizações da hélice circular. Neste trabalho, além de obtermos importantes caracterizações destas curvas, realizamos também um estudo destas do ponto de vista da teoria de curvas em superfícies regradas.
3

Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'

Rodrigo Martins 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
4

Singularidades das Superfícies Regradas em R3 / Singularities of Ruled Surface in R3

Martins, Rodrigo 18 February 2004 (has links)
Estudaremos as singularidades genéricas de superfécies regradas em R3. O objetivo do trabalho é mostrar que as singularidades genéricas que ocorrem no conjunto das superfícies regradas são as mesmas que ocorrem no conjunto das aplicações diferenciáveis de R2 em R3, enquanto que as singularidades genéricas das superfícies desenvolvíveis, que formam um subconjunto das superfícies regradas, são mais degeneradas. / We study generic singularities of ruled surfaces in R3. In this work we show that generic singularities appearing in the set of ruled surfaces are the same that occur in the set of map germs from R2 to R3, while the generic singularities of developable surfaces are more degenerate.
5

Singularidades das Superfícies Regradas em R3 / Singularities of Ruled Surface in R3

Rodrigo Martins 18 February 2004 (has links)
Estudaremos as singularidades genéricas de superfécies regradas em R3. O objetivo do trabalho é mostrar que as singularidades genéricas que ocorrem no conjunto das superfícies regradas são as mesmas que ocorrem no conjunto das aplicações diferenciáveis de R2 em R3, enquanto que as singularidades genéricas das superfícies desenvolvíveis, que formam um subconjunto das superfícies regradas, são mais degeneradas. / We study generic singularities of ruled surfaces in R3. In this work we show that generic singularities appearing in the set of ruled surfaces are the same that occur in the set of map germs from R2 to R3, while the generic singularities of developable surfaces are more degenerate.
6

Superfícies Regradas de Bonnet / Superfícies Regradas de Bonnet / Bonnet Ruled Surfaces / Bonnet Ruled Surfaces

LEITE, Elaine Altino Freire 31 March 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:17Z (GMT). No. of bitstreams: 1 dissertacao elaine.pdf: 373939 bytes, checksum: b28fbe329bf631f44f6ca1941e9060b5 (MD5) Previous issue date: 2011-03-31 / In this work we show that a Surface is a Bonnet Surface if, and only if A-net, presenting in Soyuçok s work [6]. Using this result we study the Bonnet Ruled Surfaces, based in Kanbay s work [1]. / Neste trabalho, mostraremos que uma superfície é de Bonnet se, e somente se for uma Anet, apresentado no trabalho Soyuçok [6]. Usando este resultado estudamos as Superfícies Regradas de Bonnet, baseado no trabalho de Kanbay [1].

Page generated in 0.0662 seconds