• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tropical North Atlantic Hydrologic Cycle Variability in the Florida Straits During the Last Ice Age

Them, Theodore 2012 August 1900 (has links)
Abrupt, millennial-scale climate oscillations, known as Dansgaard-Oeschger (D-O) cycles, characterized the climate system during the last ice age. Proxy evidence suggests these climate oscillations resulted in global-scale reorganizations in the hydrological cycle. For this study, Mg/Ca-paleothermometry and stable isotope measurements were combined on the planktonic foraminifera Globigerinoides ruber (white variety) from Florida Straits sediment core KNR166-2 JPC26 (24*19.61'N, 83*15.14'W; 546 m depth) to reconstruct a high-resolution record of sea surface temperature and delta18OSW (a proxy for upper water column salinity) during Marine Isotope Stages 2 and 3 from 20-35.45 ka BP. As additional proxies for upper water column salinity change, Ba/Ca ratios in G. ruber were also measured to determine the relative contribution of local riverine input on the delta18OSW record and a faunal abundance count record of the planktonic foraminifera N. dutertrei abundance was developed. These results show that rapid upper water column salinity changes occurred across D-O events in the Florida Straits, coeval with climate change in the high-latitude North Atlantic. Furthermore, the G. ruber Ba/Ca record suggests that riverine-derived meltwater from the Gulf of Mexico did not significantly impact surface salinity in the Florida current, calling into question the role of Mississippi River discharge on Atlantic Meridional Overturning Circulation (AMOC) during MIS 2 and 3. Instead, the most likely cause of MIS 2 and 3 salinity changes in the Florida Straits were variations in the strength and position of the Intertropical Convergence Zone. Finally, the timing of surface salinity change was compared with the benthic delta18OC record from the same core. A recent study showed that benthic delta18OC changes on the Florida Margin can be combined with contemporaneous records from the Bahamas Margin to reconstruct Florida Current transport related to AMOC variability. These results show that atmospheric circulation changes lead AMOC changes on the transition out of cold stadial events, suggesting the trigger for these abrupt climate events may reside in the tropics rather than in the high-latitude North Atlantic as previously thought.
2

The impact of tropical sea surface temperature perturbations on atmospheric circulation over north Canada and Greenland

McCrystall, Michelle Roisin January 2018 (has links)
Identifying the drivers of Arctic climate variability is essential for understanding the recent rapid changes in local climate and determining the mechanisms that cause them. Remote tropical sea surface temperatures (SST) have been identified in previous studies as having contributed to the recent positive trends in surface temperature and geopotential height at 200 hPa over north Canada and Greenland (1979-2012) through poleward propagating Rossby waves. However, the source and direction of wave propagation on to north Canada and Greenland (NCG) differs across climate datasets indicating that there are still uncertainties surrounding the mechanisms for how the tropics influence the NCG climate. This thesis aims to further investigate the robustness of the trends over NCG and understand how circulation in this region responds to imposed tropical SST perturbations. The eddy 200 hPa geopotential height (Z200) trends over NCG are assessed in a number of different datasets and compared to the response of eddy Z200 over NCG to imposed tropical SST perturbations in a number of sensitivity studies using the HadGEM3 atmosphere-only model. These model experiments are forced with observed differences in SSTs from the beginning and end of the satellite record (1979-1988 and 2003-2012), with spatial perturbations for [i] the entire tropics, [ii] global SSTs, [iii] the tropical Pacific only, [iv] the tropical Atlantic SST only, [v] the tropical Indian Ocean only. The positive spatial trends of eddy Z200 over NCG from ERA-Interim reanalysis is largely captured in ensemble means of two available climate datasets, UPSCALE and AMIP, indicating that this is a robust climate pattern, however, these trends appear to be stronger in the latter part of the record specifically over the UPSCALE period (1985 to 2011). The model sensitivity studies show that a negative eddy Z200 anomaly over NCG was found in response to all imposed tropical SST perturbations (2003-2012) relative to a background state (1979-1988). This was due a stationary trough over the region that was able to intensify in response to a lack of a strong anomalous wave forcing from changes in mid-tropospheric temperature and zonal winds. The forcing from the tropical Atlantic, relative to the other tropical ocean basins, resulted in the largest eddy Z200 response over NCG, indicating its dominance in forcing the large scale tropical signal. The influence of extratropical SST perturbations relative to tropical SST perturbations were also investigated and it was demonstrated that this negative anomaly is largely driven by the change in tropical sea surface temperatures.

Page generated in 0.1456 seconds