• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developmentally Driven Changes in Adipogenesis in Different Fat Depots Are Related to Obesity

Breitfeld, Jana, Kehr, Stephanie, Müller, Luise, Stadler, Peter F., Böttcher, Yvonne, Blüher, Matthias, Stumvoll, Michael, Kovacs, Peter 04 April 2023 (has links)
Subcutaneous (sc) and visceral (vis) adipose tissue (AT) contribute to the variability in pathophysiological consequences of obesity and adverse fat distribution. To gain insights into the molecular mechanisms distinguishing vis and sc fat, we compared the transcriptome during differentiation of immortalized adipocytes from murine epididymal (epi) and inguinal (ing) AT. RNA was extracted on different days of adipogenesis (−2, 0, 2, 4, 6, 8) and analyzed using ClariomTM D mouse assays (Affymetrix) covering >214,900 transcripts in >66,100 genes. Transcript Time Course Analysis revealed 137 differentially expressed genes. The top genes with most divergent expression dynamics included developmental genes like Alx1, Lhx8, Irx1/2, Hoxc10, Hoxa5/10, and Tbx5/15. According to pathway analysis the majority of the genes were enriched in pathways related to AT development. Finally, in paired samples of human vis and sc AT (N = 63), several of these genes exhibited depot-specific variability in expression which correlated closely with body mass index and/or waist-to-hip ratio. In conclusion, intrinsically programmed differences in gene expression patterns during adipogenesis suggest that fat depot specific regulation of adipogenesis contributes to individual risk of obesity.
2

Frameshifting as a tool in analysis of transfer RNA modification and translation

Leipuviene, Ramune January 2004 (has links)
Studies of ribosomal reading frame maintenance are often based on frameshift mutation suppression experiments. In this thesis, suppression of a frameshift mutation in Salmonella enterica serovar Typhimurium by a tRNA and a ribosomal protein are described. The +1 frameshift mutation hisC3072 (that contains an extra G in a run of Gs) is corrected by mutations in the argU gene coding for the minor tRNAArgmnm5UCU. The altered tRNAArgmnm5UCU has a decreased stability and reduced aminoacylation due to changed secondary and/or tertiary structure. Protein sequencing revealed that during the translation of the GAA-AGA frameshifting site the altered tRNAArgmnm5UCU reads the AGA codon inefficiently. This induces a ribosomal pause, allowing the tRNAGlumnm5s2UUC residing in the ribosomal P-site to slip forward one nucleotide. The same frameshift mutation (hisC3072) was also suppressed by defects in the large ribosomal subunit protein L9. Single base substitutions, truncations, and absence of this protein induced ribosome slippage. Mutated ribosome could shift to the overlapping codon in the +1 frame, or bypass to a codon further downstream in the +1 frame. The signal for stimulation of slippage and function of L9 needs to be investigated. During the search for suppressors of the hisD3749 frameshift mutation, a spontaneous mutant was isolated in the iscU gene that contained greatly decreased levels of the thiolated tRNA modifications ms2io6A and s2C. The iscU gene belongs to the iscR-iscSUA-hscBA-fdx operon coding for proteins involved in the assembly of [Fe-S] clusters. As has been shown earlier, IscS influences the synthesis of all thiolated nucleosides in tRNA by mobilizing sulfur from cysteine. In this thesis, it is demonstrated that IscU, HscA, and Fdx proteins are required for the synthesis of the tRNA modifications ms2io6A and s2C but are dispensable for the synthesis of s4U and (c)mnm5s2U. Based on these results it is proposed that two distinct pathways exist in the formation of thiolated nucleosides in tRNA: one is an [Fe-S] cluster-dependent pathway for the synthesis of ms2io6A and s2C and the other is an [Fe-S] cluster-independent pathway for the synthesis of s4U and (c)mnm5s2U. MiaB is a [Fe-S] protein required for the introduction of sulfur in ms2io6A. TtcA is proposed to be involved in the synthesis of s2C. This protein contains a CXXC conserved motif essential for cytidine thiolation that, together with an additional CXXC motif in the C-terminus may serve as an [Fe-S] cluster ligation site.

Page generated in 0.0397 seconds