Spelling suggestions: "subject:"tube photomultiplicateurs"" "subject:"tube photomultiplier""
1 |
Scanner pour tomographie optique diffuse sans contact à canaux de détection dans le domaine temporel à deux bandes de longueur d'onde pour imagerie intrinsèque et par fluorescence sur petit animalLapointe, Eric January 2011 (has links)
Ce mémoire décrit le développement opto-mécanique et électro-mécanique de la 2ième version du scanner TomOptUS pour tomographie optique diffuse (TOD).Ce scanner est destiné à l'imagerie moléculaire 3D de l'intérieur d'un petit animal. Les buts de la TOD sont : 1) d'obtenir la distribution spatiale des coefficients d'absorption ([mu][indice inférieur a]) et de diffusion ([mu][indice inférieur s]) dans les tissus biologiques (imagerie intrinsèque) et 2) de localiser des agents fluorescents injectés et à suivre leur distribution spatiale (imagerie par fluorescence). La TOD sur petit animal est d'un grand intérêt en pharmacologie et en oncologie pour l'étiquetage de médicaments afin de suivre leur progression, pour suivre l'évolution d'une pathologie sous traitement sur un même individu, ou pour repérer des cellules cancéreuses par marquage des protéines membranaires qu'elles expriment. La diffusion de la lumière dans les tissus biologiques est le plus grand obstacle en TOD. Les mesures en régime continu ne permettent pas de distinguer les photons détectés selon le degré de diffusion qu'ils subissent. La diffusion mène à une perte d'information quant à la trajectoire suivie par les photons. La détection résolue en temps permet de garder une partie de cette information. Le scanner TomOptUS utilise un système ultra-rapide de comptage de photons corrélé en temps et des tubes photomultiplicateurs pour mesurer la distribution temporelle de pulses lumineux transmis et/ou rétrodiffusés dans le sujet à imager suite à l'illumination à l'aide d'impulsions laser ultra-brèves. La 2 ième version du scanner est un système multicanal à géométrie annulaire sur 360 [degrés] autour du sujet. Il est muni de 7 canaux de détection optique permettant l'acquisition simultanée de données tomographiques dans deux bandes de longueurs d'onde (intrinsèque et fluorescence). L'acquisition des données est automatisée par ordinateur.Ce scanner a l'avantage d'effectuer des mesures sans contact avec le sujet. Ceci facilite l'acquisition des données et permettra éventuellement de le combiner à d'autres modalités d'imagerie médicale sans contact (tomographie d'émission par positrons, tomodentométrie [i.e. tomodensitométrie] ou imagerie par résonance magnétique) pour réaliser des séances d'imagerie multimodales. Le scanner est aussi équipé d'un système de vision numérique stéréo à 2 caméras permettant de mesurer la surface externe du sujet en 3D. Les mesures tomographiques et de surface se font simultanément en utilisant le faisceau laser incident sur le sujet. On présente des résultats de localisation d'un nombre a priori inconnu d'inclusions fluorescentes ponctuelles dans une mire (ou fantôme) absorbante et diffusante. L'algorithme de localisation repose sur la mesure des temps d'arrivée des premiers photons à différentes positions angulaires autour du sujet. Ceci requiert une résolution temporelle très élevée dans la détection des photons, une très grande synchronisation des différents canaux de détection et une grande stabilité dans la détection des signaux optiques. L'architecture du scanner ainsi qu'une méthode de calibration élaborée dans le cadre des présents travaux permettent d'atteindre de telles performances. On présente également des résultats préliminaires de l'effet d'un milieu hétérogène sur le temps de vol des photons.
|
2 |
On the way to the determination of the Neutrino Mass Hierarchy with JUNO / Vers la détermination de la hiérarchie de masse des neutrinos avec l'expérience JUNOHuang, Qinhua 06 November 2019 (has links)
L'expérience JUNO est une expérience basée sur un détecteur à scintillateur liquide ayant pour objectif principal de déterminer la hiérarchie de masse des neutrinos. JUNO atteindra une sensibilité de trois écarts standards en 6 ans, avec une résolution en énergie sans précédent, meilleure que 3% à 1MeV. Le détecteur central de JUNO est un détecteur à scintillateur liquide de 20 kilotonnes, construit avec une couverture de photocathode élevée (78%) et une bonne transparence. La couverture de photocathode est assurée par 18000 photomultiplicateurs de 20 pouces et 25000 de 3 pouces, ce qui permet d'atteindre un rendement d'environ 1200 photoélectrons par MeV. Malgré les 700m d'épaisseur de roche protégeant le détecteur des rayonnements cosmiques, le bruit de fond induit par les muons atmosphériques est toujours considéré comme non négligeable par rapport au signal attendu pour la détermination de la hiérarchie de masse. Pour faire face à ce bruit de fond, un détecteur appelé "Top Tracker" permet d'améliorer la détection de ces muons. Cette thèse concerne les travaux d'optimisation pour cette expérience actuellement en cours de construction, et dont les prises de données commenceront en 2021.Pour les photomultiplicateurs de 20 pouces, deux nouvelles géométries de concentrateurs de lumière sont étudiées afin de vérifier leurs performances pour augmenter le rendement photoélectronique et donc la résolution en énergie de JUNO. La distribution spatiale et le schéma de câblage des photomultiplicateurs de 3 pouces font aussi l'objet d'études pour assurer une performance optimale du système.Cette thèse aborde ensuite la conception du système de déclenchement du Top Tracker. En effet, ce détecteur doit posséder un tel système pour rejeter les signaux produits par la radioactivité naturelle dans la caverne. Les résultats montrent qu'un système à 2 niveaux doté d'algorithmes optimisés est efficace pour la suppression de ces signaux et qu'il est ainsi possible d'obtenir une efficacité de détection des muons de 93%. Une discussion sur la contribution du Top Tracker à la suppression et à la mesure du bruit de fond induit par les muons atmosphériques est également incluse. / The JUNO experiment is a multi-purpose liquid scintillator neutrino experiment with the main objective of determining the neutrino mass hierarchy (nuMH) with a significance better than 3sigma. To achieve this goal, it is crucial that JUNO has an unprecedented energy resolution of 3% at 1 MeV. Therefore, the JUNO Central Detector (CD) will be built with 20000 ton high transparency liquid scintillator and high photomultiplier tube (PMT) photocathode coverage of 78%, which is provided by 18000 20"-PMTs (LPMTs) and 25000 3"-PMTs (SPMTs). At the same time, the background induced by atmospheric muons should be vetoed by using reconstructed muon tracks. The Top Tracker (TT) is a muon tracker installed on top of the CD for precise muon tracking.This thesis details firstly the optimisation of the LPMT and the SPMT systems, which are directly related to the antineutrino calorimetry. New designs of light concentrator tailored for the JUNO LPMT are studied in order to verify their performance on increasing the JUNO photoelectron yield. By comparing different configurations, the relation between the SPMT system performance and the non-uniform distribution of the SPMT emplacements is studied, and the scheme used for cabling between SPMTs and their Under Water Boxes (UWBs) is studied to ensure a minimal performance degradation in case of UWB failure.Afterwards, this thesis reports on the design and optimisation of the TT trigger algorithms. Due to the background induced by natural radioactivity in the JUNO cavern, the TT cannot work correctly without a trigger system. The results show that a 2-level trigger with the optimised trigger algorithm is effective for the background suppression and thus a muon detection efficiency of 93% can be achieved.A discussion about the TT contribution to the suppression and the measurement of the atmospheric muon-induced background, is also included.
|
Page generated in 0.0505 seconds