• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 10
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 70
  • 18
  • 15
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The role of the Type IV pili system in the virulence of <i>Francisella tularensis</i>

Salomonsson, Emelie January 2008 (has links)
<p><i>Francisella tularensis</i> is a Gram-negative intracellular pathogen causing the zoonotic disease tularemia. <i>F. tularensis</i> can be found almost all over the world and has been recovered from several animal species, even though the natural reservoir of the bacterium and parts of its life cycle are still unknown. Humans usually get infected after handling infected animals or from bites of blood-feeding arthropod vectors. There are four subspecies of <i>F. tularensis</i>: the highly virulent <i>tularensis</i> (Type A) that causes a very aggressive form of the disease, with mortality as high as 60% if untreated, the moderately virulent <i>holarctica</i> (Type B) and <i>mediasiatica</i>, and the essentially avirulent subspecies <i>F. novicida</i>. So far, our knowledge of the molecular mechanisms that would explain these differences in virulence among the subspecies is poor. However, recent developments of genetic tools and access to genomic sequences have laid the ground for progress in this research field. Analysis of genome sequences have identified several regions that differ between <i>F. tularensis</i> subspecies. One of these regions, RD19, encodes proteins postulated to be involved in assembly of type IV pili (Tfp), organelles that have been implicated in processes like twitching motility, biofilm formation and cell-to-cell communication in pathogenic bacteria. While there have been reports of pili-like structures on the surface of <i>F. tularensis</i>, these have not been linked to the Tfp encoding gene clusters until now. Herein, I present evidence that the <i>Francisella</i> pilin, PilA, can complement pilin-like characteristics and promote assembly of fibers in a heterologous system in <i>Neisseria gonorrhoeae. pilA</i> was demonstrated to be required for full virulence of both type A and type B strains in mice when infected via peripheral routes. A second region, RD18, encoding a protein unique to <i>F. tularensis</i> and without any known function, was verified to be essential for virulence in a type A strain. Interestingly, the non-licensed live vaccine strain, LVS (Type B), lacks both RD18 and RD19 (<i>pilA</i>) due to deletion events mediated by flanking direct repeats. The loss of RD18 and RD19 is responsible for the attenuation of LVS, since re-introducing them <i>in cis</i> could restore the virulence to a level similar to a virulent type B strain. Significantly, these deletion events are irreversible, preventing LVS to revert to a more virulent form. Therefore, this important finding could facilitate the licensing of LVS as a vaccine against tularemia.</p>
62

The role of the Type IV pili system in the virulence of Francisella tularensis

Salomonsson, Emelie January 2008 (has links)
Francisella tularensis is a Gram-negative intracellular pathogen causing the zoonotic disease tularemia. F. tularensis can be found almost all over the world and has been recovered from several animal species, even though the natural reservoir of the bacterium and parts of its life cycle are still unknown. Humans usually get infected after handling infected animals or from bites of blood-feeding arthropod vectors. There are four subspecies of F. tularensis: the highly virulent tularensis (Type A) that causes a very aggressive form of the disease, with mortality as high as 60% if untreated, the moderately virulent holarctica (Type B) and mediasiatica, and the essentially avirulent subspecies F. novicida. So far, our knowledge of the molecular mechanisms that would explain these differences in virulence among the subspecies is poor. However, recent developments of genetic tools and access to genomic sequences have laid the ground for progress in this research field. Analysis of genome sequences have identified several regions that differ between F. tularensis subspecies. One of these regions, RD19, encodes proteins postulated to be involved in assembly of type IV pili (Tfp), organelles that have been implicated in processes like twitching motility, biofilm formation and cell-to-cell communication in pathogenic bacteria. While there have been reports of pili-like structures on the surface of F. tularensis, these have not been linked to the Tfp encoding gene clusters until now. Herein, I present evidence that the Francisella pilin, PilA, can complement pilin-like characteristics and promote assembly of fibers in a heterologous system in Neisseria gonorrhoeae. pilA was demonstrated to be required for full virulence of both type A and type B strains in mice when infected via peripheral routes. A second region, RD18, encoding a protein unique to F. tularensis and without any known function, was verified to be essential for virulence in a type A strain. Interestingly, the non-licensed live vaccine strain, LVS (Type B), lacks both RD18 and RD19 (pilA) due to deletion events mediated by flanking direct repeats. The loss of RD18 and RD19 is responsible for the attenuation of LVS, since re-introducing them in cis could restore the virulence to a level similar to a virulent type B strain. Significantly, these deletion events are irreversible, preventing LVS to revert to a more virulent form. Therefore, this important finding could facilitate the licensing of LVS as a vaccine against tularemia.
63

Reactive oxygen and nitrogen in host defence against Francisella tularensis

Lindgren, Helena January 2005 (has links)
Francisella tularensis, the causative agent of tularemia, is a potent human and animal pathogen. Initially upon infection of the host, intramacrophage proliferation of F. tularensis occurs but after activation of the acquired host immunity, the phagocytes become activated to kill the bacterium. In my thesis, I focused on mechanisms utilized by F. tularensis to survive intracellularly and on host mechanisms responsible for macrophage-mediated killing and control of infection. The F. tularensis-specific protein IglC has been previously shown to be essential to the intramacrophage proliferation and virulence of the bacterium in mice. By electron microscopy of macrophages infected with either the live vaccine strain of F. tularensis or an isogenic mutant, denoted ∆iglC, expression of IglC was found to be necessary for the bacterium to escape from the phagosome. IFN-g-activated macrophages significantly inhibited the escape of the live vaccine strain of F. tularensis from the phagosome. iNOS and phox generate NO and O2-, respectively. These molecules and their reaction products possess both bactericidal and immunoregulatory properties. We investigated the capability of IFN-g-activated peritoneal exudate cells from gene deficient iNOS-/- or p47phox-/- mice to control an intracellular F. tularensis LVS infection. iNOS was found to contribute significantly to the IFN-g induced killing, while phox contributed only to a minor extent. Unexpectedly, bacteria were eradicated even in the absence of both a functional phox and an active iNOS. The eradication was found to depend on ONOO-, the reaction product of NO and O2-, because addition of a decomposition catalyst of ONOO- completely inhibited the killing. Studies on iNOS-/- or p47phox-/- mice infected with F. tularensis LVS showed phox to be important during the first days of infection, a stage when iNOS seemed dispensable. Eventually, iNOS-/- mice died of the infection, suggesting a role of iNOS later in the course of infection. iNOS-/- mice exhibited elevated IFN-g serum levels and severe liver damage suggesting that the outcome of infection was at least in part related to an uncontrolled immune response. Several pathogenic bacteria express Cu,Zn-SOD, which in combination with other enzymes detoxifies reactive oxygen species produced by the host. A deletion mutant of F. tularensis LVS lacking the gene encoding Cu,Zn-SOD was attenuated at least 100-fold compared to LVS in mice. In peritoneal exudate cells from mice, Cu,Zn-SOD was found to be required for effective intramacrophage proliferation and, in mice, important for bacterial replication at the very early phase of infection. In summary, the most conspicuous findings were a capability of IFN-g activated macrophages to retain F. tularensis LVS in the phagosome, an essential role of ONOO- in intracellular killing of F. tularensis, and an importance of Cu,Zn-SOD to the virulence of F. tularensis LVS.
64

Transport des acides aminés et virulence nutritionnelle de Francisella tularensis

Gesbert, Gaël 25 September 2014 (has links) (PDF)
Francisella tularensis, agent étiologique de la tularémie, est un pathogène intracellulaire facultatif capable d'infecter de nombreuses cellules de mammifères. Pour se multiplier activement dans le cytoplasme des cellules hôtes, la bactérie doit être en mesure de capter dans cet environnement tous les composés nécessaires à son métabolisme, et notamment des acides aminés qui représentent ses principales sources de carbone et d'azote. Les pathogènes à multiplication intracellulaire ont mis en place un ensemble de mécanismes, visant i) la manipulation des voies métaboliques de l'hôte, pour accroître le pool de nutriments disponibles, et ii) l'expression de transporteurs dédiés, pour la captation optimale de ces nutriments. Cet ensemble de mécanismes est regroupé sous le terme de " virulence nutritionnelle ". Chez Legionella pneumophila, plusieurs membres d'une sous-famille de transporteurs actifs secondaires (désignés Pht, ou transporteurs phagosomaux), responsables de la captation des acides aminés lors de la phase intracellulaire de la bactérie, ont été caractérisés. Dans ce travail, nous avons établi le rôle de deux membres de la sous-famille des transporteurs Pht (désignés AnsP et IleP), dans le transport d'acides aminés et la virulence de Francisella. La protéine AnsP est un transporteur d'asparagine. La délétion du gène codant pour ce transporteur n'a pas d'effet sur la croissance de Francisella en milieu synthétique, mais entraîne une diminution drastique de sa multiplication intracellulaire dans tous les types cellulaires testés, ainsi qu'une atténuation importante de la virulence chez la souris. La perte de virulence du mutant asnP est réversible aussi bien in vivo qu'in vitro par ajout d'asparagine en excès. F. tularensis, qui est prototrophe pour l'asparagine en milieu minimum, devient donc auxotrophe dans le cadre de sa croissance intracellulaire, et nécessite un transport de cet acide aminé via AnsP. Ce changement de besoins en asparagine entre le milieu extérieur et le milieu intracellulaire illustre bien le phénomène d'adaptation nutritionnel que réalise la bactérie dans le cadre d'une infection. La délétion du second transporteur, IleP, entraine un défaut de croissance en milieu minimum, réversible par ajout de thréonine, un précurseur métabolique de l'isoleucine chez F. tularensis subsp. novicida. Des expériences d'incorporation d'isoleucine marquée ont permis de mettre en évidence la fonction de transporteur d'isoleucine de la protéine IleP. La délétion du gène codant pour IleP entraine également un défaut de multiplication in vitro, associé à un léger retard de sortie du phagosome ainsi qu'une atténuation importante de la virulence chez la souris. Ce transporteur assure donc la captation de l'isoleucine dans des conditions où l'utilisation de la thréonine, ne permet pas d'assouvir les besoins de la bactérie. De façon remarquable, la voie de biosynthèse de l'isoleucine via la thréonine est interrompue chez les sous-espèces tularensis et holarctica. La croissance de ces sous espèces, plus virulentes que novicida, dans la cellule infectée devient donc strictement dépendante du transport de l'isoleucine par IleP. Cet exemple constitue une parfaite illustration de la spécialisation des souches pathogènes aux conditions nutritionnelles de leur hôte. En conclusion, l'ensemble des travaux présentés dans cette thèse a permis de démontrer la participation de deux transporteurs d'acides aminés à la virulence nutritionnelle de la bactérie Francisella.
65

Characterization of the PdpA protein and its role in the intracellular lifestyle of Francisella novicida

Schmerk, Crystal Lynn 29 April 2010 (has links)
Francisella tularensis is a highly virulent, intracellular pathogen that causes the disease tularaemia. Francisella species contain a cluster of genes referred to as the Francisella pathogenicity island (FPI). Several genes contained in the FPI encode proteins needed for the intracellular growth and virulence of Francisella tularensis. Pathogenicity determinant protein A (PdpA), encoded by the pdpA gene, is located within the FPI and has been associated with the virulence of Francisella species. The experiments outlined in this dissertation examine the properties of PdpA protein expression and localization as well as the phenotypes of non-polar F. novicida pdpA mutants. Monoclonal antibody detection of PdpA showed that it is a soluble protein that is upregulated in iron-limiting conditions and undetectable in an mglA or mglB mutant background. Deletion of pdpA resulted in a strain that was highly attenuated for virulence in chicken embryos and mice. The ΔpdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Infection of macrophages with the ΔpdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands. Experiments were designed to mutagenize a putative F-box domain within the amino terminus of PdpA. Deletion of amino acids 112-227 created a strain which was impaired in intracellular replication and exhibited severely reduced virulence. However, alanine mutagenesis of key conserved leucine residues required for the interaction of F-box domains with host proteins had no observed effect on bacterial growth in macrophages and did not affect virulence in chicken embryos or mice. Mono and polyubiquitinated proteins associated with both the wild type F. novicida and ΔpdpA bacterial strains early during the infection of J774A.1 macrophages. After 1 hour of infection the wild type strain developed a more intimate association with mono and polyubiquitinated proteins whereas the ΔpdpA strain did not. Inhibition of the host cell proteasome during infection did not affect the intracellular growth of wild type F. novicida. PdpA research concludes by examining the secretion patterns of F. novicida. PdpA was not detected as a surface exposed protein using biotinylation whereas IglA, IglB and IglC were found to be surface exposed in both wild type and ΔpdpA backgrounds. These observations suggest that PdpA is not involved in the assembly or function of the Francisella secretion system. FLAG tagged PdpA protein could not be detected in the TCA precipitated supernatant of broth grown cultures or in the immunoprecipitated cytosol of infected macrophages suggesting that PdpA is not a secreted protein.
66

Identification of two novel in vivo-upregulated Francisella tularensis proteins involved in metal acquisition and virulence

Wu, Xiaojun January 2016 (has links)
No description available.
67

Towards the Limits – Climate Change Aspects of Life and Health in Northern Sweden : studies of tularemia and regional experiences of changes in the environment

Furberg, Maria January 2016 (has links)
Background Indigenous peoples with traditional lifestyles worldwide are considered particularly vulnerable to climate change effects. Large climate change impacts on the spread of infectious vector-borne diseases are expected as a health outcome. The most rapid climate changes are occurring in the Arctic regions, and as a part of this region northernmost Sweden might experience early effects. In this thesis, climate change effects on the lives of Sami reindeer herders are described and 30 years of weather changes are quantified. Epidemiology of the climate sensitive human infection tularemia is assessed, baseline serologic prevalence of tularemia is investigated and the disease burden is quantified across inhabitants in the region. Methods Perceptions and experiences of climate change effects among the indigenous Sami reindeer herders of northern Sweden were investigated through qualitative analyses of fourteen interviews. The results were then combined with instrumental weather data from ten meteorological stations in a mixed-methods design to further illustrate climate change effects in this region. In two following studies, tularemia ecology and epidemiology were investigated. A total of 4,792 reported cases of tularemia between 1984 and 2012 were analysed and correlated to ecological regions and presence of inland water using geographical mapping. The status of tularemia in the Swedish Arctic region was further investigated through risk factor analyses of a 2012 regional outbreak and a cross-sectional serological survey to estimate the burden of disease including unreported cases. Results The reindeer herders described how the winters of northern Sweden have changed since the 1970s – warmer winters with shorter snow season and cold periods, and earlier spring. The adverse effects on the reindeer herders through the obstruction of their work, the stress induced and the threat to their lifestyle was demonstrated, forcing the reindeer herders towards the limit of resilience. Weather data supported the observations of winter changes; some stations displayed a more than two full months shorter snow cover season and winter temperatures increased significantly, most pronounced in the lowest temperatures. During the same time period a near tenfold increase in national incidence of tularemia was observed in Sweden (from 0.26 to 2.47/100,000 p&lt;0.001) with a clear overrepresentation of cases in the north versus the south (4.52 vs. 0.56/100,000 p&lt;0.001). The incidence was positively correlated with the presence of inland water (p&lt;0.001) and higher than expected in the alpine and boreal ecologic regions (p&lt;0.001). In the outbreak investigation a dose-response relationship to water was identified; distance from residence to water – less than 100 m, mOR 2.86 (95% CI 1.79–4.57) and 100 to 500 m, mOR 1.63 (95% CI 1.08–2.46). The prevalence of tularemia antibodies in the two northernmost counties was 2.9% corresponding to a 16 times higher number of cases than reported indicating that the reported numbers represent only a minute fraction of the true tularemia. Conclusions The extensive winter changes pose a threat to reindeer herding in this region. Tularemia is increasing in Sweden, it has a strong correlation to water and northern ecoregions, and unreported tularemia cases are quite common.
68

Protease dysregulation role in neutrophilic inflammation in cystic fibrosis /

Gaggar, Amit. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb 17, 2009). Includes bibliographical references.
69

Development of an Optical Fiber Biosensor with Nanoscale Self-Assembled Affinity Layer

Zuo, Ziwei 29 January 2014 (has links)
Optical sensor systems that integrate Long-Period-Gratings (LPG) as the detection arm have been proven to be highly sensitive and reliable in many applications. With increasing public recognition of threats from bacteria-induced diseases and their potential outbreak among densely populated communities, an intrinsic, low-cost biosensor device that can perform quick and precise identification of the infection type is in high demand to respond to such challenging situations and control the damage those diseases could possibly cause. This dissertation describes the development of a biosensor platform that utilizes polymer thin films, known as ionic self-assembled multilayer (ISAM) films, to be the sensitivity- enhancing medium between an LPG fiber and specific, recognition layer. With the aid of cross- linking reactions, monoclonal antibodies (IgG) or DNA probes are immobilized onto the surface of the ISAM-coated fiber, which form the core component of the biosensor. By immersing such biosensor fiber into a sample suspension, the immobilized antibody molecules will bind the specific antigen and capture the target cells or cell fragments onto the surface of the fiber sensor, resulting in increasing the average thickness of the fiber cladding and changing the refractive index of the cladding. This change occurring at the surface of the fiber results in a decrease of optical power emerging from the LPG section of the fiber. By comparing the transmitted optical power before and after applying the sample suspension, we are able to determine whether or not certain bacterial species have attached to the surface of the fiber, and as a consequence, we are able to determine whether or not the solution contains the targeted bacteria. This platform has the potential for detection of a wide range of bacteria types. In our study, we have primarily investigated the sensitivity and specificity of the biosensor to methicillin- resistant Staphlococcus aureus (MRSA). The data we obtained have shown a sensitive threshold at as low as 102 cfu/ml with pure culture samples. A typical MRSA antibody-based biosensor assay with MRSA sample at this concentration has shown optical power reduction of 21.78%. In a detailed study involving twenty-six bacterial strains possessing the PBP2a protein that enables antibiotic resistance and sixteen strains that do not, the biosensor system was able to correctly identify every sample in pure culture samples at concentration of 104 cfu/ml. Further studies have also been conducted on infected mouse tissues and clinical swab samples from human ears, noses, and skin, and in each case, the system was in full agreement with the results of standard culture tests. However, the system is not yet able to correctly distinguish MRSA and non-MRSA infections in clinical swab samples taken from infected patient wounds. It is proposed that nonspecific binding due to insufficient blocking methods is the key issue. Other bacterial strains, such as Brucella and Francisella tularensis have also been studied using a similar biosensor platform with DNA probes and antibodies, respectively, and the outcomes are also promising. The Brucella DNA biosensor is able to reflect the existence of 3 Brucella strains at 100 cfu/ml with an average of 12.2% signal reduction, while negative control samples at 106cfu/ml generate an average signal reduction of -2.1%. Similarly, the F. tularensis antibodies biosensor has shown a 25.6% signal reduction to LVS strain samples at 100 cfu/ml, while for negative control samples at the same concentration, it only produces a signal reduction of 0.05%. In general, this biosensor platform has demonstrated the potential of detecting a wide range of bacteria in a rapid and relatively inexpensive manner. / Ph. D.
70

The fish pathogen Francisella orientalis : characterisation and vaccine development

Ramirez Paredes, J. G. January 2015 (has links)
Piscine francisellosis in an infectious emerging bacterial disease that affects several marine and fresh water fish species worldwide, including farmed salmon, wild and farmed cod, farmed tilapia and several ornamental species, for which no commercial treatment or vaccine exists. During 2011 and the first semester of 2012, chronic episodes of moderate to high levels of mortality with nonspecific clinical signs, and widespread multifocal white nodules as the most consistent gross pathological lesion were experienced by farmed tilapia fingerlings at two different locations in Northern Europe. In this study such outbreaks of granulomatous disease were diagnosed as francisellosis with a genus-specific PCR, and 10 new isolates of the bacterium including the one named STIR-GUS-F2f7, were recovered on a new selective “cysteine blood-tilapia” agar and cysteine heart agar with bovine haemoglobin. Ultrastructural observations of the pathogen in Nile tilapia (O. niloticus) tissues suggested the secretion of outer membrane vesicles (OMVs) by the bacterial cells during infection in these fish. This represented the first documented report of isolation of pathogenic Francisella strains from tilapia in Europe. The phenotypic characterisation indicated that isolates recovered were able to metabolise dextrin, N-acetyl-D glucosamine, D-fructose, α-D-glucose, D-mannose, methyl pyruvate, acetic acid, α-keto butyric acid, L-alaninamide, L-alanine, L-alanylglycine, L-asparagine, L-glutamic acid, L-proline, L-serine, L-threonine, inosine, uridine, glycerol, D L-α-glycerol phosphate, glucose-1-phosphate and glucose-6-phosphate. The predominant structural fatty acids of the isolates were 24:1 (20.3%), 18:1n-9 (16.9%), 24:0 (13.1%) 14:0 (10.9%), 22:0 (7.8%), 16:0 (7.6%) and 18:0 (5.5%). Anti-microbial resistance analyses indicated that STIR-GUS-F2f7 was susceptible to neomycin, novobiocin, amikacin, ciprofloxacin, imipenem, gatifloxacin, meropenem, tobramycin, nitrofurantoin, and levofloxacin using the quantitative broth micro-dilution method, while the qualitative disc diffusion method indicated susceptibility to enrofloxacin, kanamycin, gentamicin, tetracycline, oxytetracycline, florfenicol, oxolinic acid and streptomycin. The use of the following housekeeping genes: mdh, dnaA, mutS, 16SrRNA-ITS-23SrRNA, prfB putA rpoA, rpoB and tpiA indicated 100% similarity with other isolates belonging to the subspecies F. noatunensis orientalis (Fno). Koch’s postulates were successfully fulfilled by establishing an intraperitoneal injection (IP) challenge model with STIR-GUS-F2f7 in Nile tilapia. Moreover, the challenge model was used to investigate the susceptibility of 3 genetic groups of tilapia to STIR-GUS-F2f7. The lowest amount of bacteria required to cause mortality was 12 CFU/ml and this was seen as early as only 24 hours post infection in the red Nile tilapia and in the wild type after 26 days, no mortalities were seen in the species O. mossambicus with this dose. The mortality in red O. niloticus was significantly higher than that of the other two tilapia groups when 12 and 120 CFU/fish were injected. It was also observed that when a dose of 1200 CFU/ml was used, the mortality in O. niloticus wild type was significantly lower than that of the other two tilapia groups and no differences were seen among the 3 groups when the highest dose (1.2 x105 CFU/fish) was used. The median lethal dose (LD50) of O. niloticus wild type was the most stable during the experiment (values around 104 CFU/ml) and the highest of the three groups after day 25 post infection. At the end of the experiment (day 45) the LD50 was 30 CFU/ml in the red Nile tilapia, 2.3x104 CFU/ml for the wild type and 3.3x102 CFU/ml for O. mossambicus. This pattern, where the LD50 of the red tilapia was lower than that of the other two groups, was observed during the whole experiment. The outcomes of these experiments suggested that the red Nile tilapia family appeared to be the most susceptible while the wild type Nile tilapia family the most resistant. The complete genome of STIR-GUS-F2f7 was sequenced using next generation sequencing (NGS) Illumina Hi-Seq platform™, and the annotation of the assembled genome predicted 1970 protein coding sequences and 63 non-coding rRNA sequences distributed in 328 sub-systems. The taxonomy of the species Francisella noatunensis was revised using genomic-derived parameters form STIR-GUS-F2f7 and other strains in combination with a polyphasic approach that included ecologic, chemotaxonomic and phenotypic analyses. The results indicated that STIR-GUS-F2f7 and all the other strains from warm water fish represent a new bacterial species for which the name Francisella orientalis was assigned. Moreover the description of F. noatunensis was emended and the creation of a new subspecies within this taxon i.e. Francisella noatunensis subsp. chilense was proposed. The results of this study led to the development of a highly efficacious vaccine to protect tilapia against francisellosis.

Page generated in 0.043 seconds