• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Efficient Textile Drying

Brunzell, Lena January 2006 (has links)
<p>Traditionally, textiles were dried outdoors with the wind and the sun enhancing the drying process. Tumble dryers offer a fast and convenient way of drying textiles independent of weather conditions. Tumble dryers, however, consume large amounts of electrical energy. Over 4 million tumble dryers are sold each year in Europe and a considerable amount of energy is used for drying of clothes. Increasing energy costs and the awareness about environmental problems related to a large energy use has increased the demand for dryers with better energy efficiency. The aim with this thesis is to show how to improve the energy efficiency of domestic tumble dryers.</p><p>Two types of tumble dryers are available on the market today: the open cycle dryer and the closed cycle dryer. In the open cycle dryer room air is heated and led into the drying drum. The exhaust air leaves the dryer and is often evacuated outside the building. In the closed cycle dryer an internal airflow is recirculated inside the dryer. When the hot air has passed through the drying drum it is led through a heat exchanger where the water vapour is condensed before the air is heated again and led to the drum. The heat exchanger is cooled with room air.</p><p>Drying at low temperature has been shown to reduce the specific energy use for an open cycle tumble dryer. In Paper I a correlation between the specific energy use, the drying time and the heat supply was established for a specific load by using the exhaust air temperature. It was shown that the total drying time and specific energy use could be predicted from data during the first hour of the process. This result indicated a possibility to create a control system that makes it possible for the user to choose between low energy use or short drying time.</p><p>The focus of Paper II is to reduce the energy use for a closed cycle tumble dryer. Energy and mass balances were established in order to determine feasible improvements. Energy and mass flows in the dryer indicated that reducing leakage from the internal system of the dryer gave the largest reduction of specific energy use. Insulation of the back cover of the dryer and opening the internal system during the falling drying rate period also gave positive results on the energy use. In total a feasible reduction of the energy use of approximately 17% was calculated.</p>
2

Energy Efficient Textile Drying

Brunzell, Lena January 2006 (has links)
Traditionally, textiles were dried outdoors with the wind and the sun enhancing the drying process. Tumble dryers offer a fast and convenient way of drying textiles independent of weather conditions. Tumble dryers, however, consume large amounts of electrical energy. Over 4 million tumble dryers are sold each year in Europe and a considerable amount of energy is used for drying of clothes. Increasing energy costs and the awareness about environmental problems related to a large energy use has increased the demand for dryers with better energy efficiency. The aim with this thesis is to show how to improve the energy efficiency of domestic tumble dryers. Two types of tumble dryers are available on the market today: the open cycle dryer and the closed cycle dryer. In the open cycle dryer room air is heated and led into the drying drum. The exhaust air leaves the dryer and is often evacuated outside the building. In the closed cycle dryer an internal airflow is recirculated inside the dryer. When the hot air has passed through the drying drum it is led through a heat exchanger where the water vapour is condensed before the air is heated again and led to the drum. The heat exchanger is cooled with room air. Drying at low temperature has been shown to reduce the specific energy use for an open cycle tumble dryer. In Paper I a correlation between the specific energy use, the drying time and the heat supply was established for a specific load by using the exhaust air temperature. It was shown that the total drying time and specific energy use could be predicted from data during the first hour of the process. This result indicated a possibility to create a control system that makes it possible for the user to choose between low energy use or short drying time. The focus of Paper II is to reduce the energy use for a closed cycle tumble dryer. Energy and mass balances were established in order to determine feasible improvements. Energy and mass flows in the dryer indicated that reducing leakage from the internal system of the dryer gave the largest reduction of specific energy use. Insulation of the back cover of the dryer and opening the internal system during the falling drying rate period also gave positive results on the energy use. In total a feasible reduction of the energy use of approximately 17% was calculated.
3

Výpočtová analýza proudění v bubnové sušičce prádla / Computational analysis of fluid flow in a tumble dryer

Dohnal, Miloslav January 2014 (has links)
The aim of this work is to create a computational model of radial industrial tumble dryers, to calculate and identify the amount of air that flows through the inside of the drum itself. The calculation will be performed via computational fluid dynamics (CFD). Furthermore, compile transient balance model of mentioned dryers. Perform simulation balance model and compare the results of simulations with experimental measurements. By comparing the experimental data and simulation to determine the degrees of freedom of balance model and evaluate their impact on the assembled transient model. For a better understanding of the drying process, there is constructed a system of differential equations describing heat and moisture within the material being dried on a simple model. In the section devoted to the computational analysis of fluid flow is analyzed existing geometry of the drum, which has a major impact on the flow of air inside the drum itself. Following describes how to simplify its complex geometry entering the computational fluid dynamics. Then, there is carried out a simulation of fluid flow inside the tumble dryers using MRF and Sliding Mesh models. Finally, there is an analysis of the data obtained and determined the average amount of air flowing through the drum itself. On the contrary, the aim of the work is not to create another text tool for students engaged in CFD theme.
4

CFD as a tool for analysis of complex geometry : Perspectives on time efficient simulations of interior household appliance components

Rezk, Kamal January 2011 (has links)
Throughout recent years, computer based programs has been applied to solve and analyze industrial problems. One of these developed programs is the Computational Fluid Dynamics (CFD) program. The purpose of implementing CFD analysis is to solve complex flow behavior which is not possible with ordinary calculus. The extensive application of CFD in the industry is a result of improved commercial CFD codes  in terms of more advance partial differential equations (PDE) describing various physical phenomena, CAD and mesh-grid generating tools and improved graphical user interfaces (GUI). Today, CFD usage has extended to fields such as aerodynamic, chemical process engineering, biomedical engineering and drying technology. As there is an on-going expansion of CFD usages in the industry, certain issues need to be addressed as they are frequently encountered. The general demand for simulation of larger control volumes and more advanced flow processes result in extensive requirement of computer resources. Numerous complex flow topics today require computer cluster networks which are not accessible for every company. The second issue is the implementation of commercial CFD codes in minor industrial companies is utilized as a black box based on the knowledge on fluid mechanic theory. A vital part of the simulation process is the evaluation of data through visual analysis of flow patterns, analysis on the sensitivity of the mesh grid, investigation of quantitative parameters such as pressure loss, velocity, turbulence intensity etc. Moreover, increased partnerships between industry and the academic world involving various CFD based design processes generally yields to a verbal communication interface which is a crucial step in the process given the fact of the level of dependency between both sides. The aim of this thesis is to present methods of CFD analysis based on these issues. In paper I, a heuristically determined design process of the geometry near the front trap door of an internal duct system was achieved by implementing the CFD code COMSOL MultiPhysics as a communication tool. The design process was established by two counterparts in the project in which CFD calculations and geometry modifications were conducted separately. Two design criteria presenting the pressure drop in duct and the outflow uniformity was used to assess geometry modifications conducted by a CAD-engineer. The geometry modifications were based on visual results of the flow patterns. The geometry modifications confirmed an improvement in the geometry as the pressure drop was reduced with 23% and the uniformity was increased with 3%. In paper II, volume-averaged equations were implemented in a tube-fin heat exchanger in order to simulate airflow. Focus was on achieving a correct volume flow rate and pressure drop (V-p) correlation. The volume averaged model (VAM) is regarded as a porous medium in which the arrangement of fins and tube bundles are replaced with volume-averaged equations. Hence, the computational time was reduced significantly for the VAM model. Moreover, experimental results of the (V-p) correlation showed good agreement with the VAM model.

Page generated in 0.0445 seconds