Spelling suggestions: "subject:"tumor cells, cultured"" "subject:"tumor cells, xultured""
11 |
Chemical, pharmacokinetic and biological aspects of platinum-based drugs /Yachnin, Jeffrey R., January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
|
12 |
Effects of tumor necrosis factor on taurine transport in cultured rat astrocytes.January 1993 (has links)
by Chang Chuen Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 125-140). / Acknowledgement --- p.4 / List of Abbreviations --- p.5 / Abstract --- p.7 / Chapter CHAPTER I --- INTRODUCTION --- p.10 / Chapter 1.1 --- Astrocytes in the Central Nervous System --- p.10 / Chapter 1.1.1 --- Characteristics of astrocytes --- p.10 / Chapter 1.1.2 --- Functional roles of astrocytes --- p.11 / Chapter 1.1.2.1 --- General functions of astrocytes --- p.11 / Chapter 1.1.2.2 --- Volume regulation of astrocytes in CNS injuries --- p.12 / Chapter 1.1.2.3 --- Immunological functions of astrocytes --- p.13 / Chapter 1.2 --- Taurine in the CNS --- p.15 / Chapter 1.2.1 --- The biochemistry and distribution of taurine --- p.15 / Chapter 1.2.2 --- Physiological functions of taurine in the CNS --- p.19 / Chapter 1.2.3 --- Uptake and release of taurine by cultured astrocytes --- p.20 / Chapter 1.2.3.1 --- Taurine uptake in astrocytes --- p.21 / Chapter 1.2.3.2 --- Taurine release in astrocytes --- p.22 / Chapter 1.3 --- Tumor necrosis factor in the CNS --- p.23 / Chapter 1.3.1 --- Characteristics of tumor necrosis factor --- p.23 / Chapter 1.3.2 --- Sources of TNF in the CNS --- p.25 / Chapter 1.3.3 --- Functions of TNF in the CNS --- p.26 / Chapter 1.3.4 --- TNF and signal transduction --- p.27 / Chapter 1.4 --- cGMP second messenger system in astrocyte --- p.29 / Chapter 1.4.1 --- cGMP as second messenger in astrocytes --- p.29 / Chapter 1.4.2 --- Post cGMP cascade effects --- p.30 / Chapter 1.5 --- The aims of this project --- p.30 / Chapter CHAPTER II --- METHODS --- p.34 / Chapter 2.1 --- Primary astrocytes culture --- p.34 / Chapter 2.1.1 --- Primary rat astrocytes culture --- p.34 / Chapter 2.1.2 --- Primary mouse astrocytes culture --- p.36 / Chapter 2.1.3 --- Culture of rat C6 glioma cell line --- p.36 / Chapter 2.1.4 --- Subculture of astrocytes in different media --- p.37 / Chapter 2.2 --- Taurine uptake and release assay --- p.39 / Chapter 2.2.1 --- Taurine uptake assay --- p.39 / Chapter 2.2.2 --- Taurine release assay --- p.41 / Chapter 2.3 --- The effects of TNF on taurine transport --- p.42 / Chapter 2.4 --- The effects of TNF on cell volume in astrocytes --- p.43 / Chapter 2.5 --- "The effects of TNF on amino acids, glucose and neurotransmitters uptake" --- p.43 / Chapter 2.5.1 --- The effects of TNF on amino acids uptake --- p.43 / Chapter 2.5.2 --- The effects of TNF on glucose uptake --- p.44 / Chapter 2.5.3 --- The effects of TNF on neurotransmitters uptake --- p.45 / Chapter 2.6 --- The effects of LPS on taurine uptake in astrocytes --- p.46 / Chapter 2.7 --- The effects of IFN-¡’ on taurine uptake in astrocytes --- p.46 / Chapter 2.8 --- The effects of PMA on taurine uptake in astrocytes --- p.47 / Chapter 2.9 --- "The effects of TNF on thymidine, uridine and leucine incorporation in astrocytes" --- p.47 / Chapter 2.10 --- The effects of TNF on basal level of cGMP in astrocytes --- p.48 / Chapter 2.11 --- The effects of TNF on protein phosphorylation in astrocytes --- p.49 / Chapter 2.12 --- The effects of TNF on calcium uptake in astrocytes --- p.50 / Chapter CHAPTER III --- RESULTS --- p.51 / Chapter 3.1 --- The effects of TNF on taurine transport in cultured rat astrocytes --- p.51 / Chapter 3.1.1 --- The effects of TNF on [3H]-taurine uptake -time course study --- p.52 / Chapter 3.1.2 --- The effects of TNF on the kinetic parameters of the taurine uptake system --- p.54 / Chapter 3.1.3 --- The effects of TNF concentration on taurine uptake --- p.63 / Chapter 3.1.4 --- The effects of TNF exposure time on taurine uptake --- p.65 / Chapter 3.1.5 --- The effects of TNF on cell volume change in astrocytes --- p.67 / Chapter 3.1.6 --- "Comparison of the effects of TNF on taurine uptake amongst cultured primary rat astrocytes, primary mouse astrocytes and C6 glioma cell line" --- p.69 / Chapter 3.1.7 --- The effects of TNF on taurine release --- p.71 / Chapter 3.1.8 --- The specificity of the effects of TNF on taurine uptake --- p.74 / Chapter 3.1.8.1 --- The effects of TNF on the uptake of amino acids and glucose in primary rat astrocytes --- p.79 / Chapter 3.1.8.2 --- The effects of TNF on neurotransmitters uptake --- p.87 / Chapter 3.1.9 --- The effects of LPS on taurine uptake in astrocytes --- p.92 / Chapter 3.1.10 --- The effects of IFN-¡’ on taurine uptake in astrocytes --- p.97 / Chapter 3.1.11 --- The effects of PMA on taurine uptake --- p.99 / Chapter 3.2 --- The effects of TNF on cell metabolism in rat astrocytes --- p.102 / Chapter 3.2.1 --- The effects of TNF on astrocyte proliferation --- p.102 / Chapter 3.2.2 --- The effects of TNF on RNA synthesis --- p.103 / Chapter 3.2.3 --- The effects of TNF on protein synthesis --- p.106 / Chapter 3.2.4 --- The effects of TNF on basal level of cGMP --- p.108 / Chapter 3.2.5 --- The effects of TNF on protein phosphorylation --- p.111 / Chapter 3.2.6 --- The effects of TNF on calcium uptake --- p.113 / Chapter Chapter IV --- DISCUSSION AND CONCLUSION --- p.116 / References --- p.125
|
13 |
Actions of pineal indoleamines on tumor cell lines and the murine immune system.January 1994 (has links)
by Poon Yam Kau. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 174-183). / Abstract --- p.1 / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Discovery of melatonin --- p.4 / Chapter 1.2 --- Biosynthesis of melatonin --- p.4 / Chapter 1.3 --- Physiology of melatonin and other pineal indoles --- p.5 / Chapter 1.4 --- Relationship between pineal indoles and cancers --- p.6 / Chapter 1.5 --- Macrophages --- p.9 / Chapter 1.6 --- Lymphocytes --- p.11 / Chapter Chapter 2 --- Effects of different light/dark cycles on serum melatonin level in mice and effect of melatonin-feeding on serum glutamate-oxaloacetate transaminase (GOT) activity in mice / Chapter 2.1 --- Introduction --- p.14 / Chapter 2.2 --- Materials and methods --- p.15 / Chapter 2.3 --- Results --- p.22 / Chapter 2.4 --- Discussion --- p.23 / Chapter Chapter 3 --- Actions of endogenous and exogenous melatonin on murine peritoneal macrophages / Chapter 3.1 --- Introduction --- p.27 / Chapter 3.2 --- Materials and methods --- p.28 / Chapter 3.3 --- Results --- p.33 / Chapter 3.4 --- Discussion --- p.36 / Chapter Chapter 4 --- Actions of endogenous and exogenous melatonin on murine splenic lymphocytes / Chapter 4.1 --- Introduction --- p.55 / Chapter 4.2 --- Materials and methods --- p.56 / Chapter 4.3 --- Results --- p.62 / Chapter 4.4 --- Discussion --- p.69 / Chapter Chapter 5 --- In vitro effects of melatonin on murine peritoneal macrophages and splenic lymphocytes / Chapter 5.1 --- Introduction --- p.105 / Chapter 5.2 --- Materials and methods --- p.106 / Chapter 5.3 --- Results --- p.109 / Chapter 5.4 --- Discussion --- p.113 / Chapter Chapter 6 --- Effects of methoxytryptamine on murine peritoneal macrophages and splenic lymphocytes / Chapter 6.1 --- Introduction --- p.125 / Chapter 6.2 --- Materials and methods --- p.126 / Chapter 6.3 --- Results --- p.129 / Chapter 6.4 --- Discussion --- p.132 / Chapter Chapter 7 --- In vitro effects of pineal indoles on cultured tumor cell lines / Chapter 7.1 --- Introduction --- p.145 / Chapter 7.2 --- Materials and methods --- p.146 / Chapter 7.3 --- Results --- p.148 / Chapter 7.4 --- Discussion --- p.152 / Chapter Chapter 8 --- General Discussion --- p.170 / References --- p.174
|
14 |
Effect of combined treatment of tumor necrosis factor-alpha and hyperthermia on human and murine tumor cells.January 1998 (has links)
by Lam Kai Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 156-165). / Abstract also in Chinese. / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1 --- Tumor Necrosis Factor-α in Cancer Treatment --- p.1 / Chapter 1.1.1 --- Historical Background --- p.1 / Chapter 1.1.2 --- Mechanisms of Action --- p.2 / Chapter 1.1.2.1 --- Production of Reactive oxidative Species / Chapter 1.1.2.2 --- Increase of Intracellular Free Calcium Concentration / Chapter 1.1.2.3 --- Activation of Ca2+/Mg2+-dependent Endonuclease / Chapter 1.1.2.4 --- Decrease of glucose uptake and Protein Synthesis / Chapter 1.1.2.5 --- Formation of Ion-permeable Channel / Chapter 1.1.2.6 --- Activation of Phospholipase / Chapter 1.1.2.7 --- Increase of S-phase Cells / Chapter 1.1.2.8 --- Immunomodulatory Effects / Chapter 1.1.3 --- Resistance of Cells to TNF-α --- p.7 / Chapter 1.1.4 --- Clinical Studies --- p.11 / Chapter 1.1.5 --- Side Effects --- p.12 / Chapter 1.2 --- Hyperthermia and Cancer Treatment --- p.14 / Chapter 1.2.1 --- Hyperthermic Agents --- p.15 / Chapter 1.2.2 --- Intrinsic Heat Sensitivity --- p.15 / Chapter 1.2.3 --- Mechanisms of Action --- p.17 / Chapter 1.2.3.1 --- Depolarization of Membrane Potential / Chapter 1.2.3.2 --- "Reduction of glucose transport and DNA, mRNA and Protein Synthesis" / Chapter 1.2.3.3 --- Decrease of Intracellular pH / Chapter 1.2.3.4 --- Calcium Imbalance / Chapter 1.2.3.5 --- Effect on Nucleolar Protein / Chapter 1.2.3.6 --- Apoptosis / Chapter 1.2.3.7 --- Induction of Autologous Tumor Killing / Chapter 1.2.3.8 --- "Blood Flow, Tumor Oxygenation and Vascular Damage" / Chapter 1.2.4 --- Clinical Studies --- p.20 / Chapter 1.3 --- Combined Treatment --- p.21 / Chapter 1.3.1 --- Combined Treatment with TNF-α and Fixed-temperature Hyperthermia --- p.22 / Chapter 1.3.2 --- Combined Treatment with TNF + Step-down Hyperthermia --- p.22 / Chapter 1.3.3 --- In Vivo Study --- p.23 / Chapter 1.3.4 --- Sequence of Treatment --- p.24 / Chapter 1.3.5 --- Proposed Mechanism of Synergism --- p.24 / Chapter 1.4 --- Objective of Study --- p.26 / Chapter 1.4.1 --- Sequence of Treatments --- p.26 / Chapter 1.4.2 --- Comparison of Treatments' Effectiveness --- p.27 / Chapter 1.4.3 --- Effect on Normal Cell --- p.27 / Chapter 1.4.4 --- Effect on Distribution of Cells in Cell Cycle Phases --- p.28 / Chapter 1.4.5 --- In Vivo Study --- p.28 / Chapter Chapter Two: --- Materials and Methods --- p.30 / Chapter 2.1. --- Materials --- p.30 / Chapter 2.1.1 --- For Cell Culture --- p.30 / Chapter 2.1.2 --- In vitro Treatments --- p.31 / Chapter 2.1.3 --- DNA Electrophoresis --- p.31 / Chapter 2.1.4 --- Flow Cytometry --- p.32 / Chapter 2.2. --- Reagent Preparation --- p.33 / Chapter 2.2.1 --- Culture Media --- p.33 / Chapter 2.2.2 --- Human Recombinant Tumor Necrosis Factor alpha (rhTNF-α) --- p.33 / Chapter 2.2.3 --- Phosphate Buffered Saline (PBS) --- p.33 / Chapter 2.2.4 --- Lysis Buffer --- p.34 / Chapter 2.2.5 --- TE Buffer --- p.34 / Chapter 2.2.6 --- Proteinase K and Ribonuclease A (RNase A) --- p.34 / Chapter 2.2.7 --- 100 Base-Pair DNA Marker --- p.34 / Chapter 2.2.8 --- Propidium Iodide (PI) --- p.35 / Chapter 2.3 --- Methods --- p.35 / Chapter 2.3.1 --- Cell Culture --- p.35 / Chapter 2.3.1.1 --- Ehrlich Ascitic Tumor (EAT) and Human Leukemia (HL-60) / Chapter 2.3.1.2 --- Human Coronary Artery Endothelial Cells (HCAEC) / Chapter 2.3.2 --- In vitro Experiments --- p.36 / Chapter 2.3.3 --- Tumor Necrosis Factor Treatment --- p.37 / Chapter 2.3.4 --- Hyperthermia Treatments --- p.37 / Chapter 2.3.5 --- Cell Counting --- p.38 / Chapter 2.3.5.1 --- Trypan Blue Exclusion Assay / Chapter 2.3.5.2 --- Neutral Red Assay / Chapter 2.3.6 --- Determination of Additive or Synergistic Effect --- p.39 / Chapter 2.3.7 --- DNA Electrophoresis --- p.40 / Chapter 2.3.8 --- Flow Cytometry --- p.42 / Chapter 2.3.7.1 --- Preparation of Samples / Chapter 2.3.7.2 --- Flow Cytometry Acquisition / Chapter 2.3.7.3 --- Analysis / Chapter 2.3.9 --- In vivo Experiments --- p.44 / Chapter 2.3.8.1 --- Animal Strain / Chapter 2.3.8.2 --- Cell Line / Chapter 2.3.8.3 --- Tumor Necrosis Factor Treatment / Chapter 2.3.8.4 --- Hyperthermia Treatments / Chapter 2.3.8.5 --- Test of Body Temperature / Chapter 2.3.8.6 --- Cell Harvesting / Chapter Chapter Three: --- Result --- p.50 / Chapter 3.1 --- Optimal Sequence of Treatments --- p.50 / Chapter 3.1.1 --- Optimal Sequence of Treatments on Murine Ehrlich Ascitic Tumor (EAT) cells --- p.50 / Chapter 3.1.1.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.1.1.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.1.1.3 --- TNF + Step-down Hyperthermia3 / Chapter 3.1.2 --- Optimal Sequence of Treatments on Human Leukemia cells HL-60 --- p.60 / Chapter 3.1.2.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.1.2.2 --- TNF + Step-Down Hyperthermia2 / Chapter 3.1.2.3 --- TNF + Step-Down Hyperthermia3 / Chapter 3.2 --- Comparison of Effectiveness of Treatments --- p.72 / Chapter 3.2.1 --- Effectiveness of Various treatments on EAT cells --- p.72 / Chapter 3.2.2 --- Synergistic Effect between rhTNF-α and Hyperthermia on EAT cells --- p.74 / Chapter 3.2.3 --- Decrease of Relative Growth and Viability of EAT with Time --- p.79 / Chapter 3.2.3.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.2.3.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.2.3.3 --- TNF + Step-down Hyperthermia3 / Chapter 3.2.4 --- Comparison of Effectiveness of Various Treatments on HL-60 cells --- p.82 / Chapter 3.2.5 --- Synergistic Effect between rhTNF-α and Hyperthermia on HL-60 cells --- p.87 / Chapter 3.2.6 --- Change of Relative Growth and Viability of HL-60 with Time --- p.90 / Chapter 3.2.6.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.2.6.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.2.6.3 --- TNF + Step-down hyperthermia3 / Chapter 3.3 --- Cell Death Pathway --- p.96 / Chapter 3.3.1 --- Experiments on Ehrlich Ascitic Tumor (EAT) Cells --- p.96 / Chapter 3.3.2 --- Experiments on Human Leukemia (HL-60) Cells --- p.100 / Chapter 3.4 --- Experiment on Normal Cell --- p.104 / Chapter 3.5 --- Effect of TNF + Fixed-temperature Hyperthermia on the Cell Cycle Progression --- p.107 / Chapter 3.5.1 --- Different Times of TNF Administration and Distribution of EAT cells in Cell cycle --- p.107 / Chapter 3.5.2 --- Different Times of TNF Administration and Distribution of HL-60 cells in Cell Cycle --- p.114 / Chapter 3.5.3 --- Shift of Cells Cycle after TNF Treatment --- p.120 / Chapter 3.5.3.1 --- Response of Ehrlich Ascitic Tumor Cells / Chapter 3.5.3.2 --- Response of Human leukemia Cells / Chapter 3.6 --- Effectiveness of Treatments in vivo: --- p.129 / Chapter 3.6.1 --- Dose-dependent Response --- p.129 / Chapter 3.6.2 --- Change of Body Temperature During Hyperthermia --- p.131 / Chapter 3.6.3 --- Comparison of Effectiveness of Various Treatments in vivo --- p.133 / Chapter 3.6.4 --- Synergistic Effect Between rhTNF-α and Hyperthermia in vivo --- p.135 / Chapter Chapter Four: --- Discussion --- p.138 / Chapter 4.1 --- Optimal Sequence of Treatments --- p.139 / Chapter 4.2 --- Comparison of Various Treatments --- p.143 / Chapter 4.3 --- Distribution of Cells in Cell Cycle Phases --- p.149 / Chapter 4.4 --- In vivo Study --- p.153 / Chapter Chapter Five: --- References --- p.156
|
15 |
Modification of anticancer drug sensitivity of human prostate cancer cells by estrogen related compounds.January 1998 (has links)
by Cheung Tak Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 117-123). / Abstract also in Chinese. / Acknowledgeements --- p.i / Abbreviations --- p.ii / Abstract --- p.v / List of Figures --- p.viii / List of Tables --- p.xiv / Contents --- p.xv / Contents / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Epidemiological Risk Factors --- p.1 / Chapter 1.1.1 --- Age --- p.1 / Chapter 1.1.2 --- Race --- p.2 / Chapter 1.1.3 --- Environmental or Migratory Factor --- p.2 / Chapter 1.1.4 --- Diet --- p.2 / Chapter 1.1.5 --- Genetics --- p.3 / Chapter 1.2 --- Regulation of Normal Prostate Development and Function --- p.4 / Chapter 1.3 --- Biochemistry and Development of Prostate Cancer --- p.6 / Chapter 1.3.1 --- Androgen-Dependent Prostate Cancer --- p.6 / Chapter 1.3.2 --- Androgen-Independent Prostate Cancer --- p.8 / Chapter 1.4 --- Classification of Prostate Cancer --- p.9 / Chapter 1.4.1 --- Stage A Prostate Cancer --- p.10 / Chapter 1.4.2 --- Stage B Prostate Cancer --- p.10 / Chapter 1.4.3 --- Stage C Prostate Cancer --- p.11 / Chapter 1.4.4 --- Stage D Prostate Cancer --- p.11 / Chapter 1.5 --- Methods for Early Detection of Prostate Cancer --- p.12 / Chapter 1.6 --- Clinical Treatment of Prostate Cancer --- p.12 / Chapter 1.6.1 --- Surgery --- p.12 / Chapter 1.6.2 --- Radiotherapy --- p.13 / Chapter 1.6.3 --- Chemotherapy --- p.13 / Chapter 1.6.4 --- Hormonal Therapy --- p.13 / Chapter 1.7 --- Objective --- p.14 / Chapter 1.8 --- Estrogen and Its Related Compounds --- p.16 / Chapter 1.8.1 --- 17β-Estradiol --- p.16 / Chapter 1.8.2 --- Tamoxifen --- p.18 / Chapter 1.8.3 --- Aromatase Inhibitor --- p.20 / Chapter 1.9 --- Anticancer Drugs --- p.23 / Chapter 1.9.1 --- Doxorubicin --- p.23 / Chapter 1.9.2 --- cis-Platinum --- p.24 / Chapter 1.10 --- Apoptotic Pathways --- p.25 / Chapter 1.10.1 --- BCL-2 /BAD Pathway --- p.26 / Chapter 1.10.2 --- FADD Pathway --- p.27 / Chapter 1.10.3 --- CAS Pathway --- p.27 / Chapter 2. --- Materials and Methods --- p.28 / Chapter 2.1 --- Materials --- p.28 / Chapter 2.2 --- Cell Lines --- p.32 / Chapter 2.3 --- Preparation of Drugs --- p.32 / Chapter 2.4 --- Drug Sensitivity Assay --- p.33 / Chapter 2.5 --- Cell Cycle Analysis --- p.35 / Chapter 2.6 --- DNA Fragmentation Assay --- p.36 / Chapter 2.7 --- Annexin Binding Assay --- p.37 / Chapter 2.8 --- Western Blot Analysis --- p.38 / Chapter 2.9 --- Data Analysis --- p.41 / Chapter 3. --- Results --- p.42 / Chapter 3.1 --- Response of Human Androgen-Independent Prostate Cancer Cells to Doxorubicin and cis-Platinum --- p.42 / Chapter 3.2 --- The Effect of 17p-Estradiol on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.45 / Chapter 3.2.1 --- 17β-Estradiol on Cell Growth --- p.45 / Chapter 3.2.2 --- 17β-Estradiol on Anticancer Drug Sensitivity --- p.45 / Chapter 3.2.3 --- 17β-Estradiol and Doxorubicin on Cell Cycle Progression --- p.51 / Chapter 3.2.4 --- 17β-Estradiol and Doxorubicin Induced DNA Fragmentation --- p.57 / Chapter 3.2.5 --- 17β-Estradiol and Doxorubicin on Annexin Staining --- p.59 / Chapter 3.2.6 --- 17β-Estradiol and Doxorubicin on Apoptotic Protein Expression --- p.62 / Chapter 3.3 --- The Effect of Tamoxifen on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.64 / Chapter 3.3.1 --- Tamoxifen on Cell Growth of Human --- p.65 / Chapter 3.3.2 --- Tamoxifen on Anticancer Drug Sensitivity --- p.65 / Chapter 3.3.3 --- Tamoxifen and Doxorubicin on Cell Cycle Progression --- p.71 / Chapter 3.3.4 --- Tamoxifen and Doxorubicin Induced DNA Fragmentation --- p.76 / Chapter 3.3.5 --- Tamoxifen and Doxorubicin on Annexin Staining --- p.78 / Chapter 3.3.6 --- Tamoxifen and Doxorubicin on Apoptotic Protein Expression --- p.79 / Chapter 3.4 --- The Effect of Aromatase Inhibtiors on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.81 / Chapter 3.4.1 --- Aromatase Inhibitors on Cell Growth --- p.81 / Chapter 3.4.2 --- Aromatase Inhibitors on Anticancer Drug Sensitivity --- p.83 / Chapter 3.4.3 --- 4-AcA and Doxorubicin on Cell Cycle Progression --- p.93 / Chapter 3.4.4 --- 4-AcA and Doxorubicin Induced DNA Fragmentation --- p.99 / Chapter 3.4.5 --- 4-AcA and Doxorubicin on Annexin Staining --- p.100 / Chapter 3.4.6 --- 4-AcA and Doxorubicin on Apoptotic Protein Expression --- p.102 / Chapter 4. --- Discussion --- p.105 / Chapter 4.1 --- 17 β-Estradiol and Anticancer Drug Sensitivity --- p.106 / Chapter 4.2 --- Tamoxifen and Anticancer Drug Sensitivity --- p.109 / Chapter 4.3 --- Aromatase Inhibitors and Anticancer Drug Sensitivity --- p.112 / Chapter 4.4 --- DU145 Cells vs PC3 Cells --- p.115 / Chapter 5. --- Conclusion and Perspectives --- p.116 / Chapter 6. --- References --- p.117
|
16 |
Inhibition of NFKB by adenovirus E1A in induction of macrophage senstivity [sic] and reduced tumorigencity [sic] in vivo /Morris, Kristin Renee. January 2006 (has links)
Thesis (Ph.D. in Immunology) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 129-141). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
|
17 |
Evaluation of the deoxyribonucleoside kinase of Drosophila Melanogaster (Dm-dNK) as a suicide gene for treatment of solid tumors /Zheng, Xinyu, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.
|
18 |
Selection of simian immunodeficiency virus variants during progression to immunodeficiency /Chackerian, Bryce Charles, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [115]-128).
|
19 |
Imaging the tumor microenvironment : the dynamics and modification of hypoxia /Ljungkvist, Anna, January 2003 (has links)
Diss. (sammanfattning) Umeå : Univ., 2003. / Härtill 4 uppsatser.
|
20 |
Modulation of folate receptor-[alpha] by glucocorticoid receptor and progesterone receptorTran, Thuyet Van. January 2004 (has links)
Thesis (Ph. D.)--Medical College of Ohio, 2004. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: Manohar Ratnam. Includes abstract. Document formatted into pages: iii, 293 p. Title from title page of PDF document. Includes bibliographical references (p. 175-281).
|
Page generated in 0.0687 seconds