Spelling suggestions: "subject:"tumor necrosis"" "subject:"humor necrosis""
91 |
In vitro studies on the mechanisms of hyperthermia- and TNF-α-induced apoptosis.January 2002 (has links)
by Yuen Wai Fan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 211-232). / Abstracts in English and Chinese. / Acknowledgements --- p.i / List of Publications and Abstracts --- p.ii / Abbreviations --- p.iv / Abstract --- p.xi / Abstract in Chinese --- p.xiv / List of Figures --- p.xvii / List of Tables --- p.xxiii / Contents --- p.xxiv / Chapter Chapter 1. --- General Introduction --- p.1 / Chapter 1.1 --- Hyperthermia --- p.2 / Chapter 1.1.1 --- History of Hyperthermia --- p.2 / Chapter 1.1.2 --- Biological Functions of Hyperthermia --- p.3 / Chapter 1.1.3 --- Clinical Application of Hyperthermia --- p.4 / Chapter 1.1.3.1 --- Whole-body Hyperthermia --- p.4 / Chapter 1.1.3.2 --- Regional Hyperthermia --- p.4 / Chapter 1.1.3.3 --- Local Hyperthermia --- p.5 / Chapter 1.1.4 --- Combination Therapy --- p.5 / Chapter 1.1.4.1 --- Combined treatment with Hyperthermia and Radiotherapy --- p.6 / Chapter 1.1.4.2 --- Combined treatment with Hyperthermia and Chemotherapy --- p.6 / Chapter 1.2 --- Tumour Necrosis Factor --- p.9 / Chapter 1.2.1 --- History of Tumour Necrosis Factor --- p.9 / Chapter 1.2.2 --- Sources of TNF-α and TNF-β --- p.9 / Chapter 1.2.3 --- Biological Roles of TNF --- p.10 / Chapter 1.2.3.1 --- Receptors of TNF-α --- p.11 / Chapter 1.2.4 --- Signaling Pathway of TNF --- p.12 / Chapter 1.2.4.1 --- Activation of Death Domain --- p.12 / Chapter 1.2.4.2 --- Activation of Sphingomyelin Pathway --- p.13 / Chapter 1.2.4.3 --- Activation of NF-kB pathway --- p.13 / Chapter 1.3 --- Types of Cell Death: Necrosis and Apoptosis --- p.16 / Chapter 1.3.1 --- Necrosis --- p.16 / Chapter 1.3.2 --- Apoptosis --- p.16 / Chapter 1.4 --- Signaling Pathway in Apoptosis --- p.19 / Chapter 1.4.1 --- Factors Involved in Apoptotic Pathway --- p.19 / Chapter 1.4.1.1 --- Caspases --- p.19 / Chapter 1.4.1.2 --- Death Substrates --- p.20 / Chapter 1.4.1.3 --- Bcl-2 Protein Family --- p.21 / Chapter 1.4.1.4 --- Role of Mitochondria --- p.23 / Chapter 1.5 --- Objectives of the Project --- p.26 / Chapter Chapter 2. --- Materials and Methods --- p.28 / Chapter 2.1 --- Materials --- p.29 / Chapter 2.1.1 --- Culture of Cells --- p.34 / Chapter 2.1.1.1 --- "TNF-α Sensitive Cell Line, L929" --- p.34 / Chapter 2.1.1.2 --- "TNF-α Resistance Cell Line, L929-11E" --- p.34 / Chapter 2.1.1.3 --- Preservation of Cells --- p.35 / Chapter 2.1.2 --- Culture Media --- p.36 / Chapter 2.1.2.1 --- RPMI 1640 (Phenol Red Medium) --- p.36 / Chapter 2.1.2.2 --- RPMI 1640 (Phenol Red-Free Medium) --- p.36 / Chapter 2.1.3 --- Buffers and Reagents --- p.37 / Chapter 2.1.3.1 --- Preparation of Buffers --- p.37 / Chapter 2.1.3.2 --- Buffer for Common Use --- p.37 / Chapter 2.1.3.3 --- Reagents for Annexin-V-FITC/PI assay --- p.37 / Chapter 2.1.3.4 --- Reagents for Cytotoxicity Assay --- p.37 / Chapter 2.1.3.5 --- Reagents for Molecular Biology Work --- p.38 / Chapter 2.1.3.6 --- Reagents for Western Blotting Analysis --- p.38 / Chapter 2.1.4 --- Chemicals --- p.40 / Chapter 2.1.4.1 --- Recombinant Murine TNF-α --- p.40 / Chapter 2.1.4.2 --- Dye for Cytotoxicity Assay --- p.41 / Chapter 2.1.4.3 --- Fluorescence Dyes --- p.41 / Chapter 2.1.4.4 --- Chemicals Related to Mitochondrial Studies --- p.41 / Chapter 2.1.4.5 --- Inhibitors of Caspases --- p.42 / Chapter 2.1.4.6 --- Antibodies for Western Blotting --- p.42 / Chapter 2.1.4.7 --- Other Chemicals --- p.43 / Chapter 2.2 --- Methods --- p.44 / Chapter 2.2.1 --- Treatment with TNF-α --- p.44 / Chapter 2.2.2 --- Treatment with Hyperthermia --- p.44 / Chapter 2.2.3 --- In vitro Cell Cytotoxicity Assay --- p.45 / Chapter 2.2.4 --- Flow Cytometry --- p.46 / Chapter 2.2.4.1 --- Introduction --- p.46 / Chapter 2.2.4.2 --- Analysis by FCM --- p.48 / Chapter 2.2.4.3 --- Determination of Apoptotic and Late Apoptotic/Necrotic Cells with Annexin-V-FITC/PI Cytometric Analysis --- p.50 / Chapter 2.2.4.4 --- Determination of Mitochondrial Membrane Potential (ΔΨm) --- p.51 / Chapter 2.2.4.5 --- Determination of Hydrogen Peroxide (H202) Release --- p.52 / Chapter 2.2.4.6 --- Determination of Intracellular Free Calcium ([Ca2+]i) Level --- p.52 / Chapter 2.2.4.7 --- Determination of the Relationship of ΔΨm and [Ca2+]i Level --- p.53 / Chapter 2.2.5 --- Western Blotting Analysis --- p.53 / Chapter 2.2.5.1 --- Preparation of Proteins from Cells --- p.53 / Chapter 2.2.5.2 --- SDS Polyacrylamide Gel Electophoresis (SDS- PAGE) --- p.56 / Chapter 2.2.5.3 --- Electroblotting of Proteins --- p.57 / Chapter 2.2.5.4 --- Probing Antibodies for Proteins --- p.57 / Chapter 2.2.5.5 --- Enhanced Chemiluminescence (ECL) assay --- p.58 / Chapter 2.2.6 --- Reverse Transcriptase Polymerase Chain Reaction --- p.58 / Chapter 2.2.6.1 --- Extraction of RNA by Trizol Reagent --- p.59 / Chapter 2.2.6.2 --- Determination of the Amount of RNA --- p.60 / Chapter 2.2.6.3 --- Agarose Gel Electrophoresis --- p.60 / Chapter 2.2.6.4 --- Reverse Transcription --- p.63 / Chapter 2.2.6.5 --- Polymerase Chain Reaction (PCR) --- p.63 / Chapter 2.2.6.6 --- Design of Primers for Different Genes --- p.64 / Chapter 2.2.6.7 --- Determination of the Number of Cycles in PCR for Different Genes --- p.67 / Chapter 2.2.7 --- Caspase Fluorescent Assay --- p.67 / Chapter 2.2.7.1 --- Caspase-3 or ´ؤ8 Assay --- p.67 / Chapter Chapter 3. --- Results --- p.59 / Chapter 3.1 --- Studies of the Characteristics of L929 and L929-11E cells --- p.70 / Chapter 3.1.1 --- Determination of the Growth Curve of L929 and L929-11E Cells --- p.70 / Chapter 3.2 --- Studies on the Effect of TNF-α on L929 and L929-11E Cells --- p.73 / Chapter 3.2.1 --- TNF-α Induced Cell Death in L929 Cells but not in L929- 11E Cells --- p.73 / Chapter 3.2.2 --- TNF-α Induced Apoptosis in a Time-dependent Manner in L929Cells but not in L929-11E Cells --- p.80 / Chapter 3.2.3 --- TNF-α Induced Mitochondrial Membrane Depolarization in a Time-dependent Manner in L929 Cells but notin L929-11E Cells --- p.87 / Chapter 3.2.4 --- TNF-α Induced Cytochrome c Release in a Time- dependent Manner in L929 Cells but not in L929-11E Cells --- p.92 / Chapter 3.3 --- Effect of Hyperthermia on L929 and L929-11E Cells --- p.96 / Chapter 3.3.1 --- Introduction --- p.95 / Chapter 3.3.2 --- Hyperthermia Induced Apoptosis in L929 and L929-11E Cells --- p.96 / Chapter 3.3.3 --- Effect of Hyperthermia on Mitochondrial Membrane Depolarization --- p.100 / Chapter 3.3.4 --- Hyperthermia Induced Cyto c Release in a Time-dependent Manner in L929 and L929-11E Cells --- p.105 / Chapter 3.4 --- Relationship of Hyperthermia and TNF-α with PTP in L929 Cells --- p.107 / Chapter 3.5 --- Effect of TNF-α and Hyperthermia on the Level of Hydrogen Peroxide (H202) in L929 and L929-11E Cells --- p.114 / Chapter 3.5.1 --- Introduction --- p.114 / Chapter 3.5.2 --- TNF-α Enhanced the Level of H202 in L929 cells but not in L929-11E Cells --- p.115 / Chapter 3.5.3 --- Hyperthermia Enhanced the Level of H202 in L929 and L929-11E cells --- p.117 / Chapter 3.6 --- Effect of TNF-α and Hyperthermia on the Level of Intracellular Calcium in L929 and L929-11E Cells --- p.122 / Chapter 3.6.1 --- Increase in the Intracellular Calcium Level Induced by TNF-α Was Related to the Mitochondrial Membrane Depolarization in L929 Cells but not in L929-11E Cells --- p.122 / Chapter 3.6.2 --- Hyperthermia Increased the Level of [Ca2+]i in L929 and L929-11E Cells in a Time-dependent Manner --- p.124 / Chapter 3.7 --- Effect of Combined Hyperthermia and TNF-α Treatment on the Induction of Apoptosis in L929 and L929-1 1E Cells --- p.129 / Chapter 3.7.1 --- Combined Treatment with Hyperthermia and TNF- α Induced Apoptosis in Both L929 and L929-11E cells --- p.129 / Chapter 3.7.2 --- Hyperthermia and Its Combined Treatment with TNF-α Induced Mitochondrial Membrane Depolarization in L929 and L929-11E Cells --- p.135 / Chapter 3.8 --- Investigation of the Downstream Apoptotic Pathway in L929 and L929-11E Cells Upon Hyperthermia and TNF-a treatment --- p.142 / Chapter 3.8.1 --- Introduction --- p.142 / Chapter 3.8.2 --- Effect ofTNF-α and Hyperthermia on p53 Expression --- p.142 / Chapter 3.8.3 --- Effect of Hyperthermia and TNF-α on PARP --- p.146 / Chapter 3.8.4 --- Effect of Hyperthermia and TNF-α on Caspase-3 Activity --- p.149 / Chapter 3.8.5 --- Effect of Hyperthermia and TNF-α on Bid protein --- p.158 / Chapter 3.8.6 --- Effect of Hyperthermia and TNF-α on Caspase-8 Activity --- p.165 / Chapter 3.8.7 --- Effect ofTNF-α on TNFR1 Expression --- p.169 / Chapter Chapter 4. --- Discussion / Chapter 4.1 --- TNF-α Induced Apoptosis and Changed the Mitochondrial Activities in L929 Cells --- p.176 / Chapter 4.2 --- L929-11E cells Possessed Resistance Towards TNF-α --- p.187 / Chapter 4.3 --- Hyperthermia Triggered Apoptosis and Changed Mitochondrial Activities in L929 and L929-11E cells --- p.190 / Chapter 4.4 --- Combined hyperthermia and TNF-α treatment induced cell death and changed mitochondria activities in L929 and L929-11E cells --- p.195 / Chapter 4.5 --- Reversal of the TNF-α resistance and Enhancement of Sensitivity Towards Hyperthermia in L929-11E cells --- p.197 / Chapter 4.6 --- Proposed Pathway in the TNF-α- and Hyperthermia-mediated Apoptosis --- p.200 / Chapter 4.7 --- Application of TNF-α and Hyperthermia on Clinical Cancer Treatment --- p.203 / Chapter Chapter 5. --- Future Perspective of the Project --- p.206 / References --- p.210
|
92 |
Effects of tumor necrosis factor-alpha on glucose uptake in primary cultured rat astrocytes.January 2005 (has links)
Wong Chun Lung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 202-225). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.vi / Acknowledgements --- p.ix / Table of Contents --- p.x / List of Abbreviations --- p.xv / List of Figures --- p.xix / List of Tables --- p.xx iii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- "Neurodegeneration, Inflammation and Gliosis" --- p.1 / Chapter 1.2 --- Anatomy of the CNS --- p.5 / Chapter 1.3 --- Astrocytes --- p.6 / Chapter 1.3.1 --- Morphology and Identification of Astrocytes --- p.6 / Chapter 1.3.2 --- Physiological Functions of Astrocytes in the CNS --- p.7 / Chapter 1.3.2.1 --- Induction of Blood-brain Barrier (BBB) --- p.7 / Chapter 1.3.2.2 --- Metabolism of Neurotransmitters --- p.9 / Chapter 1.3.2.3 --- Nursing Role of Astrocytes --- p.9 / Chapter 1.3.2.4 --- Immunological Functions of Astrocytes --- p.10 / Chapter 1.3.3 --- Neonatal Rat Cortical Astrocytes as In Vitro Model --- p.12 / Chapter 1.4 --- Cytokines in Brain Damage --- p.14 / Chapter 1.4.1 --- Lipopolysaccharides (LPS) --- p.16 / Chapter 1.4.2 --- Tumor Necrosis Factor-α (TNF-α) --- p.17 / Chapter 1.4.3 --- Interleukin-1 (IL-1) --- p.19 / Chapter 1.4.4 --- Interleukin-6 (IL-6) --- p.20 / Chapter 1.4.5 --- Interferon-γ (IFN-γ) --- p.21 / Chapter 1.5 --- Cytokines-induced Signaling Cascade --- p.22 / Chapter 1.5.1 --- TNF Receptors --- p.23 / Chapter 1.5.2 --- Ca2+ --- p.25 / Chapter 1.5.3 --- MAPK --- p.26 / Chapter 1.5.4 --- PICA --- p.27 / Chapter 1.5.5 --- NFkB --- p.29 / Chapter 1.6 --- Glucose Metabolism in the Brain and Glucose Transporters --- p.31 / Chapter 1.6.1 --- Glucose Transporters in the Brain --- p.32 / Chapter 1.6.2 --- Glucose Transporters in Brain Damage --- p.34 / Chapter 1.7 --- Ascorbic Acid Metabolism in the Brain --- p.36 / Chapter 1.8 --- Aim and Scope of this Project --- p.39 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Neonatal Sprawley 一Dawley Rats --- p.43 / Chapter 2.1.2 --- Plain Dulbecco Modified Eagle Medium ´ؤ Formula 12 (pDF12) --- p.43 / Chapter 2.1.3 --- Complete DF-12(cDF12) --- p.43 / Chapter 2.1.4 --- Phosphate Buffered Saline (PBS) --- p.44 / Chapter 2.1.5 --- Hank's Buffer (HSB) --- p.44 / Chapter 2.1.6 --- D/L-Homocysteine Buffer --- p.44 / Chapter 2.1.7 --- "LPS, Cytokines and Pentoxifylline" --- p.45 / Chapter 2.1.8 --- Specific TNF Receptor Agonist: TNF antibodies --- p.45 / Chapter 2.1.9 --- Calcium Modulators --- p.45 / Chapter 2.1.10 --- PKA Modulators --- p.46 / Chapter 2.1.11 --- NFkB Inhibitors --- p.47 / Chapter 2.1.12 --- MAPK Inhibitors --- p.47 / Chapter 2.1.13 --- β-Adrenergic Receptor Modulators --- p.47 / Chapter 2.1.14 --- Reagents for RNA and Protein Isolation --- p.48 / Chapter 2.1.15 --- Reagents for Reverse Transcription-Polymerase Chain Reaction (RT-PCR) --- p.48 / Chapter 2.1.16 --- Reagents for DNA Electrophoresis --- p.49 / Chapter 2.1.17 --- Reagents for Real-time PCR --- p.51 / Chapter 2.1.18 --- Reagents for Western Blotting --- p.51 / Chapter 2.1.19 --- Reagents for MTT Assay --- p.51 / Chapter 2.1.20 --- Reagents for 3H-Thymidine Incorporation Assay --- p.52 / Chapter 2.1.21 --- Reagents for Glucose Uptake Assay --- p.52 / Chapter 2.1.22 --- Reagents for Ascorbic Acid Accumulation Assay --- p.53 / Chapter 2.1.23 --- Reagents for Immunostammg --- p.53 / Chapter 2.1.24 --- Other Chemicals and Reagents --- p.53 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Preparation of Primary Cultured Rat Astrocytes --- p.55 / Chapter 2.2.2 --- Measuring Cell Viability: MTT Assay --- p.56 / Chapter 2.2.3 --- Measuring Cell Proliferation: 3H Thymidine Incorporation Assay --- p.57 / Chapter 2.2.4 --- Measuring Glucose Uptake: Zero-trans Glucose Uptake Assay --- p.58 / Chapter 2.2.5 --- Measuring Ascorbic Acid Accumulation --- p.60 / Chapter 2.2.6 --- Total Protein Extraction --- p.61 / Chapter 2.2.7 --- Western Blotting --- p.62 / Chapter 2.2.8 --- Immunostaining --- p.64 / Chapter 2.2.9 --- Isolation of RNA --- p.64 / Chapter 2.2.10 --- Measurement of RNA Yield --- p.65 / Chapter 2.2.11 --- RNA Gel Electrophoresis --- p.66 / Chapter 2.2.12 --- Reverse Transcription (RT) --- p.66 / Chapter 2.2.13 --- Polymerase Chain Reaction (PCR) --- p.67 / Chapter 2.2.14 --- Separation of PCR Products by Agarose Gel Electrophoresis --- p.67 / Chapter 2.2.15 --- Quantization of PCR Products and Western Blotting --- p.68 / Chapter 2.2.16 --- Real-time PCR --- p.68 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Role of Calcium Ions (Ca2+) in TNF-α-induced Astrocyte Proliferation --- p.70 / Chapter 3.1.1 --- Effects of Changes of Extracellular Ca2+ on Astrocyte Viability --- p.72 / Chapter 3.1.2 --- Effects of Other Divalent Ions on Astrocyte Viability --- p.74 / Chapter 3.1.3 --- Effects of Changes of Intracellular Ca2+ on Astrocyte Viability --- p.78 / Chapter 3.1.4 --- Role of Ca2+ on TNF-α-mduced Proliferation in Astrocytes --- p.85 / Chapter 3.1.5 --- Role of Other Divalent Ions on tnf-α-mduced Proliferation in Astrocytes --- p.90 / Chapter 3.2 --- Effect of Cytokines on Glucose Uptake in Rat Astrocytes --- p.95 / Chapter 3.2.1 --- Basal level of Glucose Uptake in Astrocytes and Effects of Cytokines on Glucose Uptake in Astrocytes --- p.95 / Chapter 3.2.2 --- Signaling Cascade of LPS- and TNF-α-induced Glucose Uptake in Astrocytes --- p.120 / Chapter (A) --- TNFR Subtypes Mediating TNF-a-induced Glucose Uptake --- p.121 / Chapter (B) --- MAPK --- p.125 / Chapter (C) --- PKA --- p.133 / Chapter (D) --- NFkB --- p.139 / Chapter (E) --- Other Mechanisms / Signalling molecules --- p.150 / Chapter (1) --- Interaction with β-Adrenegic Mechanism / Chapter (2) --- Role of cGMP --- p.154 / Chapter (3) --- Effect of Mg2+ on LPS- / TNF-α- induced Glucose Uptake in Astrocytes --- p.156 / Chapter (4) --- Possible Involvement of IGF-1 System --- p.160 / Chapter 3.2.3 --- Summary --- p.163 / Chapter 3.3 --- Effects of LPS and Cytokines on AA Accumulation in Astrocytes --- p.164 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Role of Calcium ions (Ca2+) in TNF-α-induced Astrocyte Proliferation --- p.177 / Chapter 4.1.1 --- Drastic Changes in Extracellular Ca2+ Caused Astrocyte Death --- p.178 / Chapter 4.1.2 --- Extraordinary Role of Ca2+ in Astrocytes Survival --- p.178 / Chapter 4.1.3 --- Elevation of [Ca2+]i Reduced Astrocyte Viability --- p.180 / Chapter 4.1.4 --- Failure of Verapamil to Block TNF-α-induced Astrocyte Proliferation --- p.182 / Chapter 4.2 --- Hypothesis for the Relationship between Cytokines and Energy Metabolism --- p.185 / Chapter 4.2.1 --- Mechanism and Signaling Cascade of the Elevated Glucose Uptake --- p.186 / Chapter 4.2.2 --- Increased Glucose Uptake by Cytokines: Friend or Foe? --- p.191 / Chapter 4.2.3 --- Depletion of AA Pool by LPS --- p.194 / Chapter 4.2.4 --- Possible Bedside Application of the Findings --- p.195 / Chapter 4.3 --- Prospects of This Study and Concluding Remarks --- p.197 / Appendix --- p.201 / References --- p.202
|
93 |
Generation and characterization of anti-TNF-α aptamers. / Generation and characterization of anti-TNF-alpha aptamers / CUHK electronic theses & dissertations collectionJanuary 2008 (has links)
Ngan, Kit Shan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 176-187). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
|
94 |
Particle-induced pulmonary inflammation and fibrosis role of inflammatory mediators in the initiation and progression of occupational lung disease /Zeidler, Patti C. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xv, 190 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
|
95 |
Investigation of the role of CD137 (4-1BB) costimulation in human CD8⁺ T cell responsesBerger, DeAnna L. January 2004 (has links)
Thesis (M.S.)--University of Missouri--Columbia, 2004. / Typescript. Includes bibliographical references (leaves 97-111). Also issued on the Internet.
|
96 |
Characterization of the TNFa microsatellite's reliability, MHC associations and occurrence in two ethnically different SLE populations /Simms, Michelle, January 1999 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, Faculty of Medicine, 1999. / Typescript. Bibliography: leaves 113-124.
|
97 |
Effects of IL-27 and uric acid crystal on the activation of fibroblast-like synoviocytes, and the anti-inflammatory activities of sinomenine and liang miao san on TNF-α-activated fibroblast-like synoviocytes in rheumatoid arthritis. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Besides the molecular mechanisms regulating activation of FLS mentioned above, we also investigated anti-inflammatory activities of Chinese herbal medicine sinomenine and Liang Miao San on activated human FLS in RA. Sinomenine, an alkaloid isolated from the root of Sinomenium acutum, has been used to alleviate the symptoms of rheumatic diseases. Liang Miao San (LMS), composed of the herbs Rhizoma Atractylodis (Cangzhu) and Cotex Phellodendri (Huangbai), is another traditional Chinese medicine formula for RA treatment. Since the potential anti-inflammatory activities of sinomenine and LMS have been demonstrated, we investigated the in vitro anti-inflammatory effects of sinomenine and LMS on inflammatory cytokine TNF-alpha activation of human normal and RA-FLS and the underlying intracellular mechanisms. In the present study, sinomenine was found to significantly inhibit TNF-alpha induced cell surface expression of VCAM-1 and release of inflammatory cytokine and chemokine IL-6, CCL2 and CXCL8 from both normal and RA-FLS (all p < 0.05). Our results provide a new insight into the differential anti-inflammatory activities of sinomenine and LMS through the suppression of TNF-alpha activated FLS by modulating distinct intracellular signaling pathways in RA, and help to provide a biochemical basis for the development of a cost-effective human synoviocyte model for the future screening of traditional Chinese medicine (TCM) possessing potential anti-rheumatic activities. (Abstract shortened by UMI.) / IL-27, a novel member of the IL-12 family that is produced early by antigen-presenting cells (APCs), can promote T cell proliferation as well as the production of interferon-gamma by naive T lymphocytes. Recent studies have found that elevated expression of IL-27 has been detected in the synovial membranes and fluid of RA. Herein we investigated the in vitro effects of IL-27, alone or in combination with inflammatory cytokine TNF-alpha or IL-Ibeta on the pro-inflammatory activation of human primary FLS isolated from RA patients and normal control subjects, and the underlying intracellular signaling molecules were also studied. We found that the plasma concentration of IL-27 in RA patients (n=112) was significantly higher than that in control subjects (n=46). Both normal and RA-FLS constitutively express functional IL-27 receptor heterodimer, gp130 and WSX-1, with more potent IL-27-mediated activation of signal transducers and activators of transcription (STAT)1 in RA-FLS. IL-27 was found to induce significantly higher cell surface expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 and release of inflammatory cytokine IL-6, chemokine CCL2, CXCL9, CXCL10 and matrix metalloproteinase (MMP)-1 of RA-FLS than that of normal FLS (all p < 0.05). The above findings therefore provide a new insight into the IL-27-activated immunopathological mechanisms mediated by distinct intracellular signal transductions in joint inflammation of RA and may have important therapeutic implications. / In the present study, we have investigated the mechanisms of the activation of human fibroblast-like synoviocytes (FLS) induced by various stimuli including interleukin (IL)-27, tumor necrosis factor (TNF)-alpha and IL-beta. The activation of human FLS was studied in terms of the release of cytokines and chemokines and the expression of adhesion molecules. / We investigated the in vitro effects of uric acid crystals, alone or in combination with inflammatory cytokine TNF-alpha or IL-beta on the pro-inflammatory activation of human FLS from RA patients and normal control subjects, and the underlying intracellular signaling molecules were also determined. In the present study, uric acid crystals were found to result in a significant increase of inflammatory cytokine IL-6, chemokine CXCL8 and MMP-1 from both normal and RA-FLS (all p < 0.05). Moreover, additive or synergistic effect was observed in the combined treatment of uric acid crystals and TNF-alpha or IL-1beta on the release of IL-6, CXCL8 and MMP-1 from both normal and RA-FLS. Further investigations showed that the release of inflammatory cytokine, chemokine and matrix metalloproteinase stimulated by uric acid crystals was differentially regulated by intracellular activation of extracellular signal-regulated kinase (ERK) and JNK pathways. Our results therefore provide a new insight into the endogenous danger signal uric acid crystals-activated immunopathological mechanisms mediated by distinct intracellular signal transductions in joint inflammation, and also provide biochemical basis for the development of new modality for inflammatory rheumatic diseases. / Chen, Dapeng. / Adviser: Wong Chun Kwok. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 203-240). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
98 |
Role of Brain-and reproductive-organs-specific (BRE) gene in liver.January 2007 (has links)
Wong, Chi Bun. / Thesis submitted in: Nov 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 116-127). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 摘要 --- p.v / Abbreviations --- p.vii / List of Table and Figures --- p.ix / Table of Contents --- p.x / Chapter Chapter 1 --- p.1 / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Identification of the proteins regulated by BRE when BRE was over-expressed or silencedin C2C12 and D122 --- p.1 / Chapter 1.1.1 --- What is BRE? --- p.1 / Chapter 1.1.2 --- BRE gene is Highly Conserved --- p.2 / Chapter 1.1.3 --- BRE binds to the Intracellular Domain of TNFR1 and Fas --- p.3 / Chapter 1.1.4 --- BRE Suppresses Apoptosis --- p.4 / Chapter 1.1.5 --- "BRE forms a Holoenzyme Complex with BRCA1, BARD1 and BRCC36" --- p.4 / Chapter 1.16 --- Roles of the Differentially Expressed Proteins Identified in the siRNA knockdown Experiments --- p.5 / Chapter 1.1.6.1 --- Akt3 --- p.5 / Chapter 1.1.6.2 --- Mdm2/4 --- p.6 / Chapter 1.1.6.3 --- Prohibitin --- p.7 / Chapter 1.1.6.4 --- Carbonic Anhydrase III --- p.8 / Chapter 1.1.6.5 --- 26S Proteasome --- p.8 / Chapter 1.2 --- The Role of BRE in Liver: a morphological approach --- p.9 / Chapter 1.2.1 --- The General Structure of the Liver. --- p.9 / Chapter 1.2.2 --- The Essential Functions of the Liver --- p.11 / Chapter 1.2.3 --- Inflammation of the Liver --- p.11 / Chapter 1.2.3.1 --- Hepatitis --- p.11 / Chapter 1.2.3.2 --- Acute Hepatitis --- p.12 / Chapter 1.2.3.3 --- Chronic Hepatitis --- p.12 / Chapter 1.2.4 --- Necrosis and Apoptosis --- p.13 / Chapter 1.2.5 --- The Apoptotic Pathway --- p.14 / Chapter 1.2.6 --- Hepatic Necrosis is Divided into Different Zones --- p.16 / Chapter 1.2.6.1 --- Hepatitis Necrosis is Categorized into 3 Zones --- p.16 / Chapter 1.2.7 --- Carbon Tetrachloride (CCL4) --- p.16 / Chapter 1.2.8 --- TNFa is a Pleiotropic Cytokine --- p.17 / Chapter 1.3 --- The Objectives of This Project --- p.20 / Chapter Chapter 2 --- p.21 / Chapter 2. --- Materials and Methods --- p.21 / Chapter 2.1 --- Animals --- p.21 / Chapter 2.2 --- Adminstration of Carbon Tetrachloride and Corn Oil --- p.21 / Chapter 2.3 --- Cell Cultures --- p.22 / Chapter 2.4 --- Cell Culturing --- p.22 / Chapter 2.5 --- Gene Silencing with Small Interfering RNA (siRNA) --- p.23 / Chapter 2.5.1 --- Transfection with BRE siRNA --- p.24 / Chapter 2.6 --- Cell Proliferation Assays --- p.24 / Chapter 2.7 --- In-Situ Hybridization of BRE Sense and Antisense Probes --- p.25 / Chapter 2.8 --- Immunohistological Staining --- p.26 / Chapter 2.9 --- Semi-Quantitative RT-PCR --- p.28 / Chapter 2.10 --- Comparative Proteomics --- p.29 / Chapter 2.10.1 --- Sample Preparation for Two Dimensional Gel Electrophoresis --- p.29 / Chapter 2.10.2 --- Two Dimensional Polyacrylamide Gel Electrophoresis --- p.30 / Chapter 2.10.3 --- In-Gel Digestion and MALDI-TOF Analysis --- p.31 / Chapter 2.11 --- Western Blotting --- p.32 / Chapter 2.12 --- Flow Cytometry --- p.34 / Chapter 2.13 --- Haematoxylin and Eosin Staining (H&E) --- p.34 / Chapter Chapter 3 --- p.36 / Chapter 3. --- Results --- p.36 / Chapter 3.1 --- BRE expression in C2C12 cells --- p.36 / Chapter 3.2 --- Comparative Proteomic Profile of BRE silenced C2C12 cells --- p.41 / Chapter 3.3 --- Effect of Silencing BRE on C2C12 cell Proliferation --- p.49 / Chapter 3.4 --- Effects of BRE over-expression in D122 cells --- p.54 / Chapter 3.5 --- BRE Expression in the Liver --- p.62 / Chapter 3.5.1 --- Histological Analysis of Liver Sections after 24 hours of CCL4 Insult --- p.62 / Chapter 3.5.2 --- BRE Expression in the Liver --- p.62 / Chapter 3.6 --- Histological Study of Liver Treated with CCL4 --- p.67 / Chapter 3.7 --- BRE Expression in Experimental Liver --- p.76 / Chapter Chapter 4 --- p.92 / Chapter 4. --- Discussion --- p.92 / Chapter 4.1 --- Expression of BRE in C2C12 --- p.92 / Chapter 4.2 --- The Regulatory Function of BRE --- p.96 / Chapter 4.3 --- The Relationship Between BRE and p53 --- p.98 / Chapter 4.4 --- The Relationship Between BRE and NFkB --- p.104 / Chapter 4.5 --- BRE Expression in Normal Control and CCL4 Treated Livers --- p.105 / Chapter 4.6 --- A Possible Explanation for the Necrosis Pattern Observed --- p.107 / Chapter 4.7 --- The Relationship Between BRE and the TNF Receptors --- p.109 / Chapter Chapter 5 --- p.112 / Chapter 5. --- Conclusion and Future Prospects --- p.112 / References --- p.116
|
99 |
A comprehensive study of a novel anti-apoptotic gene, BRE. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
Li Qing. / "July 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 161-192). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
100 |
Intracellular signal transduction mechanisms regulating the activation of human bronchial epithelial cells by interleukin-17A, interleukin-27, tumor necrosis factor-alpha and human basophils in inflammatory diseases. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Airway bronchial epithelial cells play important roles in host defense, inflammation and regulation of immune responses. Activated bronchial epithelial cells are potent sources of a wide variety of soluble and cell-surface molecules that can alter the biological functions of inflammatory cells in the airways. Molecular mechanisms regulating the production of inflammatory mediators from bronchial epithelial cells remain to be fully elucidated. / All of the above findings suggest that human bronchial epithelial cells could be activated by a variety of stimuli in airway inflammatory reactions. Besides, different intracellular signaling pathways could regulate the activation of human bronchial epithelial cells in response to different stimuli. Our results therefore provide new insight into the molecular mechanisms involved in airway inflammatory diseases and may have important therapeutic implications. / Basophils are the accessory cell type required for T helper (Th)2 induction and initiators in IgE-mediated chronic allergic inflammation in response to allergens. Number of basophils and Th17 cells increases at the sites of allergic inflammation in the airways of allergic asthmatic patients. To elucidate the interaction among the activation of human bronchial epithelial cells, Th17 cells, and basophils, we investigated the activation effects of Th17 hallmark cytokine IL-17A on the human primary bronchial epithelial cells/BEAS-2B bronchial epithelial cells and human primary basophils/ KU812 basophilic cells. Human bronchial epithelial cells and basophils were cultured either together or separately in the presence or absence of IL-17A stimulation. Co-culture of human bronchial epithelial cells and basophils could significantly increase the release of inflammatory cytokine IL-6 and mononuclear chemoattractant protein-1 (MCP-1/CCL2), a chemokine for basophils, eosinophils and monocytes, while human bronchial epithelial cells were the main source for releasing IL-6 and CCL2. Such induction was synergistically enhanced upon the activation of IL-17A. The use of transwell inserts in the co-culture system demonstrated that the direct interaction between these two cell types was necessary for IL-6 and CCL2 release induced by IL-17A. Surface expression of intercellular adhesion molecule-1 (ICAM-1) on the human bronchial epithelial cells was also up-regulated upon their interaction. The interaction of human bronchial epithelial cells and basophils under IL-17A stimulation was differentially regulated by extracellular signal-regulated kinase (ERK), c-Jun N-terminal protein kinase (JNK), p38 mitogen activated protein kinase (MAPK) and nuclear factor (NF)-kappaB pathways. Our findings therefore suggest a novel immunopathological role of human Th17 cells and basophils in allergic asthma through the activation of granulocytes-mediated inflammation initiated by the direct interaction between human basophils and bronchial epithelial cells. / IL-27 is a novel member of the IL-6/IL-12 family cytokines that are produced early by antigen-presenting cells (APCs) during immune responses. IL-27 can drive the commitment of naive T cells to a Th1 phenotype and inhibit inflammation in later phases of infection. Recent evidence has suggested that human bronchial epithelial cells with the expression of IL-27 receptor complex are potential target cells of IL-27. Here we investigated the in vitro effects of IL-27, alone or in combination with inflammatory cytokine TNF-alpha on the pro-inflammatory activation of human bronchial epithelial cells, and the underlying intracellular signaling molecules were also studied. IL-27 was found to up-regulate ICAM-1 expression on the surface of human bronchial epithelial cells, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-alpha on the surface expression of ICAM-1. Although IL-27 did not alter the basal IL-6 secretion from human bronchial epithelial cells, it could significantly enhance TNF-alpha-induced IL-6 production. The synergistic effects on the induction of ICAM-1 and IL-6 were partially due to the up-regulated expression of TNF-alpha receptor (p55TNFR) on the surface of human bronchial epithelial cells induced by IL-27. Further investigations showed that the enhanced production of ICAM-1 and IL-6 in human bronchial epithelial cells activated by IL-27 and TNF-alpha was differentially regulated by phosphatidylinositol 3-OH kinase (PI3K)-Akt, p38 MAPK and NF-kappaB pathways. Our study therefore suggests a potential role of IL-27 and TNF-alpha in the pathogenesis of airway infection or inflammatory diseases. / In the present study, we investigated the mechanisms of the activation of human bronchial epithelial cells induced by various stimuli including interleukin (IL)-17A, IL-27, tumor necrosis factor (TNF)-alpha and human basophils. The activation of human bronchial epithelial cells was studied in terms of the expression of cytokines, chemokines and adhesion molecules. Using intracellular staining with flow cytometry and selective pharmacological inhibitors, we further investigated the underlying intracellular signaling mechanisms regulating the activation of human bronchial epithelial cells. / Cao, Ju. / Advisers: Chun K. Wong; Christopher W. K. Lam. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 175-202). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
Page generated in 0.0469 seconds