• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 14
  • 12
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 304
  • 99
  • 55
  • 48
  • 48
  • 48
  • 42
  • 41
  • 34
  • 32
  • 30
  • 23
  • 22
  • 20
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Design, synthesis and in vitro biological evaluation of potential polysialyltransferase (ST8SiaII) inhibitors

Ali, Marrwa M. January 2020 (has links)
The full text will be available at the end of the embargo period: 5th March 2027
212

A systems biology approach to target identification using three-dimensional multi-cellular tumour spheroids (MCTS). Regio-specific molecular dissection of gene expression, protein expression and functional activity in 3D MCTS.

McMahon, Kelly M. January 2011 (has links)
Within solid tumours, a microenvironment exists that causes resistance to chemotherapy. New drugs that target cells within this microenvironment are required, the first step in this process being the identification of new targets. The aim of this thesis was to characterise changes in the transcriptome and proteome within specific regions of multicell-tumour spheroids (MCTS), an experimental model that mimics many of the features of the tumour microenvironment. HT29 MCTS were separated by sequential trypsinisation into 3 main regions; the outer surface layer (SL) the peri-necroric region (PN) and the necrotic core (NC). Using an iTRAQ quantitative proteomics approach, the proteome of the different MCTS regions was investigated. A 2 dimensional separation approach using Agilent¿s OffGel system and RP-nano HPLC was incorporated prior to MS analysis. MS analysis was done using both MALDI-TOF-TOF (Bruker Ultraflex II) and ESI-Q-TOF (Agilent 6530 QTOF LC/MS) instruments. Gene expression profiles of the different MCTS were investigated and compared using Agilent¿s one-color oligonucleotide based microarrays. Transcriptomic and proteomic analysis identified several key differences in the proteins involved in cell metabolism between the SL and PN/NC regions. Similar metabolic changes were also noted between autophagic and normal monolayer cells. Many highlighted proteins represented established cancer associated proteins. Interestingly, a number of proteins were highlighted which have no previous association with cancer and may upon further validation, provide attractive leads for therapeutic intervention.
213

Secretory phospholipase A2 as a tumor specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids

Gill, Jason H., Bibby, Michael C., Jensen, S.S., Shnyder, Steven 11 1900 (has links)
No / The use of many common clinically relevant chemotherapeutics is often limited due to insufficient delivery to the tumor and dose-limiting systemic toxicities. Therefore, therapeutics that specifically target tumor cells and are nontoxic to normal cells are required. Here, we report the development of a novel class of liposomes composed of lipid prodrugs, which use the increased secretory phospholipase A2 type IIA (sPLA2) activity of the tumor microenvironment as a trigger for the release of anticancer etherlipids (AEL). Treatment of sPLA2-secreting tumor cells in vitro with liposomes consisting of proAELs resulted in growth inhibition comparable with addition of the AELs alone. Using a specific sPLA2 inhibitor, we showed the low cytotoxicity of the nonhydrolyzed proAEL liposomes and have proven the sPLA2 dependency of the activation of proAELs to cytotoxic AELs. In addition, we showed that our proAEL liposomes circumvent the inherent hemolytic toxicities associated with the use of etherlipids, thereby allowing i.v. administration of such therapeutics as nontoxic prodrug liposomes. Furthermore, using a sPLA2-secreting human colon cancer xenograft model, we showed that the proAEL liposomes are capable of inducing a tumor growth delay in vivo. Taken together, these data support the validity of this novel tumor-selective liposomal prodrug delivery strategy. This new approach also provides a promising system for tumor-selective delivery and release of conventional chemotherapeutics encapsulated in the sPLA2-degradable prodrug liposomes.
214

Cavitation-enhanced tumour-targeting virotherapy by ultrasound

Mo, Steven January 2013 (has links)
Systemic administration of adenovirus type 5 (Ad5) vectors for the treatment of cancer is limited by poor circulation kinetics and inefficient uptake from the bloodstream into tumours. This study reports a novel method for linkage of highly-PEGylated gold nanoparticles (AuPEG) to Ad5 by a single reduction cleavable bond. The resulting ‘dandelion’ structure provides very effective steric shielding with only minimal and reversible modification of the Ad5 capsid. This ablates in vitro cell infection, improves protection against the binding of antibodies, and enhances in vivo circulation kinetics. Focused ultrasound is a promising technology for the non-invasive, targeted treatment of cancer. In the context of drug delivery, cavitational energy generated upon exposure of ultrasound contrast agents to focused ultrasound can be used as a powerful stimulus to move therapeutics over distances of hundreds of microns away from blood vessels. In addition to providing a platform for effective stealthing, conjugation of AuPEG to Ad5 also increases the effective density of Ad5. This increase in density imparts a second major advantage on the strategy, observed for the first time in the present study: denser particles are transported significantly farther by cavitation-induced microstreaming than identically-sized particles of lower density. Specifically, in in vitro tests using a tumour-mimicking flow-channel phantom model and in in vivo experiments using tumour bearing mice, Ad5–AuPEG was delivered farther from vessels in response to ultrasound induced cavitation than either naked Ad5 or polymer-coated Ad5. The enhancements in stealthing and improvements in response to ultrasound provided by this strategy enabled up to 12% (S.D. 0.97) of the injected dose to be deposited in the tumour, compared to just 0.12% (S.D. 0.05) for Ad5 without ultrasound (p < 0.001). Consequently, in a survival study, mice treated with Ad5–AuPEG with focussed ultrasound had the slowest tumour growth and longest survival rate when compared to mice treated with Ad5 alone, Ad5–AuPEG alone, or Ad5 with focussed ultrasound. These results provide compelling evidence that the combination of focussed ultrasound with density-augmented stealthed Ad5 results in improved delivery to tumours and therapeutic efficacy. This combination of ultrasound with particle modification for optimal cavitation-mediated delivery has the potential to be applied to a broad range of anti-cancer nano-medicines and therapeutics to augment their bio-availability for improved cancer treatment.
215

The identification and validation of Auger electron-emitting radiopharmaceuticals targeting telomerase for cancer therapy

Jackson, Mark Richard January 2013 (has links)
Telomerase is expressed in the majority (>85%) of tumours but not in differentiated normal tissue. This enzyme catalyses the elongation of telomeres – a process critical for continued cell proliferation. Telomerase is a potential novel target for molecularly-targeted radiotherapy (mRT), due to its nuclear localization and expression profile. The radiolabelling of telomerase inhibitors may accelerate and enhance the cytotoxicity of such molecules, as a result of irradiation of the DNA. An oligonucleotide targeting telomerase RNA (hTR), shown to inhibit enzyme activity in vitro, was selected for study. Complementary and non-targeting control oligonucleotides were conjugated to a metal chelator (DTPA) to allow radiolabelling with indium-111. The radioiodination of MST-312, BIBR-1532 and flavonoid-derived small molecule inhibitors of telomerase was also pursued. The inhibitory activity of the candidate molecules was analysed using the telomeric repeat amplification protocol (TRAP). The internalization of inhibitors was assessed by gamma-counting following cell lysis. The clonogenic assay was employed to measure the effect of modified inhibitors on cell survival. Small molecule telomerase inhibitors were modified for labelling with iodine-123, which led to a modest decrease in inhibitory potency, compared to the parent molecules. Radiolabelled small molecules exhibited poor stability and internalization into cancer cells, so were unsuitable for mRT. Modified oligonucleotides potently inhibited telomerase activity, whereas a non-targeting oligonucleotide exhibited no inhibitory activity. Indium-111 radiolabelled oligonucleotides decreased the clonogenic survival of telomerase-positive breast cancer cells but not telomerase-negative cells, in a sequence-specific manner. Accordingly, complementary radiolabelled oligonucleotides were found to induce the DNA damage marker γH2AX. Oligonucleotides localized to nuclear Cajal bodies, the sites of telomerase assembly, in a proportion of cancer cells. Telomerase inhibitors of different classes were radiolabelled with Auger electron-emitting radionuclides, and delivered to cells. Radiolabelled oligonucleotides targeting telomerase significantly reduced the clonogenicity of cancer cells in vitro. This study represents a novel approach for the mRT of telomerase-positive cancers.
216

Heterogeneity of tumour response to hypoxia : carbonic anhydrase IX induction defines a subpopulation of hypoxic cells with stem cell properties and drug resistance

Ledaki, Ioanna I. January 2013 (has links)
Carbonic anhydrase IX (CA9) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. The function of CAIX is to catalyze the reversible hydration of CO2 to bicarbonate and a proton. This helps hypoxic tumours to maintain a more neutral intracellular pH (pH<sub>i</sub>) promoting survival, but produces a more acidic extracellular (pH<sub>e</sub>) which promotes invasion and metastasis. Recent evidence has expanded on the role of hypoxia and CAIX by relating them to stem cell niches. In this study, taking advantage of the transmembrane location of CAIX, we show for the first time, a direct marked heterogeneity in response to hypoxia within each tumour cell population studied, associated with major biological differences. Based on CAIX expression pattern under hypoxic conditions, we identify, isolate and characterize two distinct populations of tumour cells, one that express CAIX and the other that does not. Interestingly, we discover that the CAIX positive population is enriched with cells expressing cancer stem cell markers. These include ALDHA1, IGF1, LIN28 and genes involved in epithelial-mesenchymal transition (EMT) and multi-drug resistance (i.e. WNT2, TWIST1, and ABCC2). Accordingly, CAIX+ve cells show higher self-renewal capacity and form tumours significantly faster compared to the CAIX-ve population. Importantly, functional suppression of CAIX in vitro and in vivo, in two breast cancer cell lines resulted in the downregulation of breast cancer stem cell signatures, suggesting that CAIX is not just a marker of stemness but also a regulator of stemness. The molecular mechanism underlying the differential expression of CAIX in the two populations is not HIF-1α-dependent, but instead driven by hypoxia-induced reorganization of chromatin structure. In line with this, we provide experimental evidence showing that the genomic locus encoding CA9 has a more “open” and transcriptionally active chromatin structure in CAIX+ve cells, and a condense and transcriptionally silent chromatin structure in the CAIX-ve cells. Given that HIF induces the transcription of CA9 by binding to hypoxia response elements (HREs) in its promoter we show a significant reduction in binding of HIF to the CA9 promoter of the negative population. We suggest that the reduce HIF binding is a result of the compact chromatin structure of CA9 promoter of the negative cells. Analysis of the transcriptome of the positive and negative populations suggests a symbiotic relationship between these two subpopulations and their environment, likely required to promote tumour growth. This is based on the following observations: Firstly, we identified that CAIX-ve cells express high levels of cytokines and based on this, we suggest that the cytokines secreted by CAIX-ve cells may transmit paracrine signals that regulate the CAIX+ve cells, thus providing a wider hypoxia tolerant microenvironment to protect the stem cell population. Secondly, we identified a metabolic heterogeneity between the CAIX+ve and CAIX-ve cells. The CAIX+ve cells show an upregulation of genes implicated in oxidative phosphorylation, TCA cycle and fatty acid synthesis. Whereas in CAIX-ve cells there is an upregulation of genes implicated in autophagy and mitophagy. Given the above together with the upregulation of oxidative phosphorylation and TCA cycle in the CAIX+ve cells, we proposed the existence of a metabolic symbiosis between the CAIX+ve and CAIX-ve cells. We postulate that the catabolic process such as autophagy and mitophagy in the CAIX-ve cells may results in the overproduction of high-energy metabolites such as lactate, glutamine and ketone bodies which in turns they are been utilized by CAIX+ve cells to fuel mitochondria respiration. Finally, we also demonstrated that in the CAIX+ve cells mTORC1 signaling is upregulated, and contributes to the regulation of CAIX expression. Given the role of mTORC1 in stem cell maintenance and EMT as well as the interdependence of mTORC1 and CAIX expression in the CAIX+ve cells we suggest that mTORC1 signaling may be the critical factor by which CAIX regulates stemness. Interestingly, the subpopulations show a differential sensitivity to HDAC inhibitors, NaBu and SAHA as treatment of MCF7 breast cancer cell line and HCT116 colon cancer cell line leads to elimination of the CAIX+ve population. This is not driven by the downregulation of HIF-1α, the major transcriptional regulator of CAIX. In contrast, we demonstrate that SAHA causes downregulation mTORC1. This suggests that SAHA-induced downregulation of CAIX expression could be due to its effect on mTORC1 pathway. Of wider significance, our findings show that tumours are not homogenous in their response to hypoxia, and distinct signal transduction networks regulate different populations of cells within the tumour. This highlights the need for the utilization of biomarkers, which reveal distinct functional hypoxia profiles of human cancers, and permit the stratification of tumours. Furthermore, the identification of epigenetic regulation of the histones in response to hypoxia for highly selective gene regulation, provides a connection between the epigenetic mechanisms under environmental stress and cancer progression, and is model for development of novel epigenetic cancer therapeutic drugs.
217

Autophagy in hematopoiesis and acute myeloid leukemia

Watson, Alexander Scarth January 2014 (has links)
Acute myeloid leukemia (AML) develops following oncogenic alterations to hematopoietic stem (HSC) and progenitor cells (HSPCs) in the bone marrow, resulting in dysregulated proliferation of immature myeloid progenitors that interferes with normal hematopoiesis. Understanding the mechanisms of HSPC protection against damage and excessive division, and how these pathways are altered during leukemic progression, is vital for establishing effective therapies. Here, we show that autophagy, a lysosomal degradation pathway, is increased in HSPCs using a novel imaging flow cytometry autophagy assay. Loss of hematopoietic autophagy following deletion of key gene Atg5 resulted in increased HSC proliferation, leading to HSC exhaustion and bone marrow failure. Although erythrocyte and lymphocyte populations were negatively impacted by autophagy loss, myeloid cells showing immature characteristics were expanded. Deletion of Atg5 in an AML model resulted in increased proliferation under metabolic stress, dependent on the glycolytic pathway, and aberrant upstream mTOR signaling. Moreover, modulation of Atg5 altered leukemic response to culture with stromal cells. Finally, primary AML cells displayed multiple markers of decreased autophagy. These data suggest a role for autophagy in preserving HSC function, partially through suppression of HSPC proliferation, and indicate that decreased autophagy may benefit AML cells. We postulate that modulation of autophagy could help maintain stem cell function, for example during transplantation, and aid AML therapy in a setting-specific manner.
218

Towards a computational model of the colonic crypt with a realistic, deformable geometry

Dunn, Sara-Jane Nicole January 2011 (has links)
Colorectal cancer (CRC) is one of the most prevalent and deadly forms of cancer. Its high mortality rate is associated with difficulties in early detection, which is crucial to survival. The onset of CRC is marked by macroscopic changes in intestinal tissue, originating from a deviation in the healthy cell dynamics of glands known as the crypts of Lieberkuhn. It is believed that accumulated genetic alterations confer on mutated cells the ability to persist in the crypts, which can lead to the formation of a benign tumour through localised proliferation. Stress on the crypt walls can lead to buckling, or crypt fission, and the further spread of mutant cells. Elucidating the initial perturbations in crypt dynamics is not possible experimentally, but such investigations could be made using a predictive, computational model. This thesis proposes a new discrete crypt model, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, which allows the shape of the crypt to evolve and deform. A two-dimensional (2D) cross-sectional geometry is considered. Simulation results reveal how the shape of the crypt base may contribute mechanically to the asymmetric division events typically associated with the stem cells in this region. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. Further, in silico experiments illustrate how this framework can be used to investigate the spread of mutations, and conclude that a reduction in cell migration is key to confer persistence on mutant cell populations. A three-dimensional (3D) model is proposed to remove the spatial restrictions imposed on cell migration in 2D, and preliminary simulation results agree with the hypotheses generated in 2D. Computational limitations that currently restrict extension to a realistic 3D geometry are discussed. These models enable investigation of the role that mechanical forces play in regulating tissue homeostasis, and make a significant contribution to the theoretical study of the onset of crypt deformation under pre-cancerous conditions.
219

E2F7 : a member of the E2F family with a novel mechanism of transcriptional repression

Kesoglidou, Poli Xenia January 2012 (has links)
The mammalian E2F family of transcription factors plays a crucial role in the regulation of cellular proliferation, apoptosis and differentiation. E2F7 and E2F8 are the most recently identified family members and have unusual features that distinguish them from other members in the E2F family, including two distinct DNA-binding domains that bind to DNA in a DP-independent manner. E2F7 and E2F8 have been shown to be transcriptional repressors. However, the mechanism by which E2F7 represses E2F responsive gene expression remains to be elucidated. The results presented here provide the first insight into the E2F7-mediated transcriptional mechanism. E2F7 was shown to contain a CtBP binding motif and form a complex with CtBP in both HeLa and MCF7 cells. An E2F7 deletion mutant lacking the CtBP binding motif was unable to form a complex with CtBP and repress the transcription of E2F target genes in luciferase assays, suggesting that this motif is essential for E2F7-dependent repression. Furthermore, the E2F7-CtBP complex was shown to be stable under different types of damage, such as following etoposide and UV treatment, and under different cell redox states. Interestingly, however, E2F7 was unable to repress the transcriptional activity of E2F target genes following treatment with the CtBP substrate MTOB. Moreover, E2F7 endogenous immunoprecipitations showed that E2F7 forms a complex with the chromatin-modifying enzymes HDAC1, HDAC2 and LSD1 and the co-repressor CoREST. Interestingly, via chromatin immunoprecipitations, E2F7 was shown to recruit these co-repressors to a subset of E2F-responsive promoters where they affect the activity of these promoters in a target gene-specific manner. Furthermore, results presented here suggest that CtBP could play a dual role in E2F7 function, not only being involved in E2F7-mediated repression but also in the repression of E2F7 itself as siRNA mediated CtBP depletion was shown to cause an upregulation of E2F7 protein levels. These results implicate a repertoire of co-repressors in a target gene-specific E2F7 repression mechanism, and as such define a new level of complexity in cell cycle control.
220

The role of LATS1 in DNA damage signalling

Latusek, Robert January 2012 (has links)
Genomic DNA is constantly exposed to assaults, which if not dealt with, can lead to genomic instability and carcinogenesis. In response to stress including either Ionising Radiation (IR) or replication stress, ATM and ATR promote the activation of cell cycle checkpoints and initiate repair of DNA damage. Recent studies have revealed that ATM signalling can activate LATS1 via a cascade through RASSF1A and MST2. LATS1 is a tumour suppressor, which forms a barrier to carcinogenesis restricting cell proliferation and promoting apoptosis by stabilising a YAP/p73 transcriptional complex, hence upregulating p73 responsive genes. LATS1 is inactivated through promoter hypermethylation in a number of cancer types including breast cancer and soft tissue sarcoma. This research project seeks to define the mechanism through which LATS1 is involved in IR-induced DNA damage signalling. The data presented in this thesis shows that LATS1 controls CDK2 and regulates phosphorylation of S3291 on BRCA2. Cells lacking LATS1 exhibited enhanced accumulation of damage-induced Rad51 foci leading to cell cycle arrest at the G<sub>2</sub>/M checkpoint. Furthermore, the data presented here suggests that LATS1 may not be required for homologous recombination. This work supports the hypothesis that LATS1 inhibits CDK2-dependent phosphorylation of BRCA2 at S3291, hence protecting stalled replication forks from nucleolytic degradation.

Page generated in 0.0385 seconds