Spelling suggestions: "subject:"tungsten diselenide"" "subject:"tungsten diselenides""
1 |
Electrical Transport and Photoconduction of Ambipolar Tungsten Diselenide and n-type Indium SelenideFralaide, Michael Orcino 01 December 2015 (has links)
In today's "silicon age" in which we live, field-effect transistors (FET) are the workhorse of virtually all modern-day electronic gadgets. Although silicon currently dominates most of these electronics, layered 2D transition metal dichalcogenides (TMDCs) have great potential in low power optoelectronic applications due to their indirect-to-direct band gap transition from bulk to few-layer and high on/off switching ratios. TMDC WSe2 is studied here, mechanically exfoliated from CVT-grown bulk WSe2 crystals, to create a few-layered ambipolar FET, which transitions from dominant p-type behavior to n-type behavior dominating as temperature decreases. A high electron mobility μ>150 cm2V-1s-1 was found in the low temperature region near 50 K. Temperature-dependent photoconduction measurements were also taken, revealing that both the application of negative gate bias and decreasing the temperature resulted in an increase of the responsivity of the WSe2 sample. Besides TMDCs, Group III-VI van der Waals structures also show promising anisotropic optical, electronic, and mechanical properties. In particular, mechanically exfoliated few-layered InSe is studied here for its indirect band gap of 1.4 eV, which should offer a broad spectral response. It was found that the steady state photoconduction slightly decreased with the application of positive gate bias, likely due to the desorption of adsorbates on the surface of the sample. A room temperature responsivity near 5 AW-1 and external quantum efficiency of 207% was found for the InSe FET. Both TMDC’s and group III-VI chalcogenides continue to be studied for their remarkably diverse properties that depend on their thickness and composition for their applications as transistors, sensors, and composite materials in photovoltaics and optoelectronics.
|
2 |
Studium fotoluminiscence tenkých vrstev MoS2 / Photoluminiscence study of thin layers of MoS2Kuba, Jakub January 2016 (has links)
The thesis deals with study of thin layers of transition metal dichalcogenides, especially of molybdenum disulfide. Nanostructures were fabricated on two-dimensional crystals of MoS2 and WSe2. Within followed analysis attention was paid to the photoluminescence properties. In the thesis transition metal dichalcogenides are reviewed and description of the modified process of preparation by micromechanical exfoliation is given.
|
3 |
Optical Properties of Dielectric Cavity-Coupled Two-Dimensional Van der Waals Materials: Theoretical and Experimental StudiesOwen Maxwell Matthiessen (20447402) 18 December 2024 (has links)
<p dir="ltr">This thesis deals with optical cavity-coupled two-dimensional (2D) materials. First, we describe a new theoretical approach to model the properties of cavity-coupled plasmons in 2D conductors. Next, we propose an optical cavity architecture for enhanced light-matter interaction with potential for performance and functionality beyond that of traditional approaches and describe an initial investigation of one example of such a system. Finally, we provide a thorough description of the fabrication techniques used to produce the previously mentioned optical cavities.</p><p dir="ltr">The advent of 2D materials has opened exciting possibilities for controlling light-matter interactions at the nanoscale. The first major contribution of this work is the investigation of coupling between patterned 2D Van der Waals materials and Fabry-Perot cavities, focusing on how system parameters like pattern shape and material properties influence these interactions. Using a quasistatic eigenmode expansion approach, we develop a theoretical framework to predict and manipulate optical behavior in these systems. Our work opens new pathways for engineering light-matter interactions within patterned 2D material platforms, paving the way for the engineering of novel optical phenomena.</p><p dir="ltr">The second major contribution of this work is the development of a versatile platform for light-matter coupling experiments in Van der Waals materials. It is well-known that light-matter interaction can be used to realize unprecedented functionality in the coupled materials. However, few---if any---approaches to date utilize this phenomenon to its fullest extent. We have provided a platform that can be used to realize light-matter coupling efficiencies beyond what is possible in conventional systems, can be easily integrated with 2D materials, and provides new opportunities to engineer the photonic environment of the coupled material. In particular, we focus on silicon dielectric bowtie cavities (DBCs) coupled to few-layer flakes of $\rm WSe_2$. This approach leverages topology-optimized cavity architectures to achieve simultaneous spatial and spectral confinement, yielding Purcell factors exceeding 2500, mode volumes as small as $\sim10^{-3}(\lambda/2n)^3$, and quality factors up to $\sim200$---performance metrics limited only by material losses. The lithographically defined DBCs enable deterministic emission hotspot placement and tunability across a broad wavelength range with minimal performance impact. Photoluminescence imaging and spectroscopy reveal comparable $\rm WSe_2$ exciton emission enhancement to plasmonic structures. This platform surpasses the limitations of conventional cavity architectures by enabling unprecedented coupling efficiencies and unique functionality while maintaining sufficient mechanical robustness for 2D material transfer.</p><p dir="ltr">The final chapter outlines the fabrication process for the cavities described in the previous chapter. The fabrication involves advanced nanolithography techniques to define patterns with high resolution, addressing challenges such as proximity effects and process blur. Techniques such as proximity effect correction (PEC) are used to enhance pattern accuracy, while careful optimization of exposure and development parameters ensures minimal distortion. The process utilizes high-anisotropy reactive ion etching to transfer the patterns onto the substrate, where precise optimization of the etching parameters has been performed to achieve high resolution and selectivity. The final optimized process yields structures with a minimum feature size of approximately 20 nm and minimum radius of curvature of approximately 10 nm, allowing for the repeatable fabrication of complex inverse-designed cavities.</p>
|
4 |
Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic DevicesBandyopadhyay, Avra Sankar 12 1900 (has links)
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1.
We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions.
We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.
|
Page generated in 0.0675 seconds