• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Fabrication, and Characterization of Metals Reinforced with Two-Dimensional (2D) Materials

Charleston, Jonathan 05 July 2023 (has links)
The development of metals that can overcome the strength-ductility-weight trade-off has been an ongoing challenge in engineering for many decades. A promising option for making such materials are Metal matrix composites (MMCs). MMCs contain dispersions of reinforcement in the form of fibers, particles, or platelets that significantly improve their thermal, electrical, or mechanical performance. This dissertation focuses on reinforcement with two-dimensional (2D) materials due to their unprecedented mechanical properties. For instance, compared to steel, the most well-studied 2D material, graphene, is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa). Examples of reinforcement by graphene have achieved increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. However, the superior mechanical properties of graphene are not fully transferred to the matrix in conventional MMCs, a phenomenon known as the "valley of death." In an effort to develop key insight into how the relationships between composite design, processing, structure, properties, and mechanics can be used to more effectively transfer the intrinsic mechanical properties of reinforcements to bulk composite materials, nanolayered composite systems made of Ni, Cu, and NiTi reinforced with graphene or 2D hexagonal boron nitride h-BN is studied using experimental techniques and molecular dynamics (MD) simulations. / Doctor of Philosophy / The design of new metals with concurrently improved strength and ductility has been an enduring goal in engineering for many decades. The utilization of components made with these new materials would reduce the weight of structures without sacrificing their performance. Such materials have the potential to revolutionize many industries, from electronics to aerospace. Traditional methods of improving the properties of metals by thermomechanical processing have approached a point where only minor performance improvements can be achieved. The development of Metal matrix composites (MMCs) is among the best approaches to achieving the strength-ductility goal. Metal matrix composites are a class of materials containing reinforcements of dissimilar materials that significantly improve their thermal conductivity, electrical conductivity, or mechanical performance. Reinforcements are typically in the form of dispersed fibers, particles, or platelets. The ideal reinforcement materials have superior mechanical properties compared to the metal matrix, a high surface area, and a strong interfacial bond with the matrix. Two-dimensional (2D) materials (materials made up of a single to a few layers of ordered atoms) are attractive for reinforcement in composite materials because they possess unprecedented intrinsic properties. The most well-studied 2D material, graphene, is made of a single layer of carbon atoms arranged in a hexagonal honeycomb pattern. It is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa) than steel. Examples of graphene reinforcing have shown increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. Despite their exceptional mechanical properties, the superior mechanical properties of graphene are not fully transferred to the matrix when incorporated into conventional metal matrix composites. This phenomenon, known as the "valley of death," refers to the loss of mechanical performance at different length scales. One cause of this phenomenon is the difficulty of evenly dispersing the reinforcements in the matrix using traditional fabrication techniques. Another is the presence of dislocations in the metal matrix, which cause very large local lattice strains in the graphene. This atomistic-scale deformation at the interface between the metal and the graphene can significantly weaken it, leading to failure at low strains before reaching its intrinsic failure stress and strain. This dissertation aims to provide insight into how the relationships between composites' design, processing, structure, properties, and mechanics can be used to transfer intrinsic mechanical properties of reinforcements to bulk composite materials more effectively. For this, nanolayered composite systems of Ni and Cu reinforced with graphene or 2D h-BN were studied using experimental techniques and molecular dynamics (MD) simulations to elucidate the underlying mechanisms behind the composites' material structure and mechanical behavior. Additionally, we explore the incorporation of graphene in a metallic matrix that does not deform through dislocations (or shear bands), such as the shape memory alloy nickel-titanium ( Nitinol or NiTi), to avoid low strain failure of the metal/graphene interface. This theoretical strengthening mechanism is investigated by designing and fabricating NiTi/graphene composites.
2

Scanning Probe Microscopy Study of Molecular Nanostructures on 2D Materials

Chen, Chuanhui 20 September 2017 (has links)
Molecules adsorbed on two-dimensional (2D) materials can show interesting physical and chemical properties. This thesis presents scanning probe microscopy (SPM) investigation of emerging 2D materials, molecular nanostructures on 2D substrates at the nanometer scale, and biophysical processes on the biological membrane. Two main techniques of nano-probing are used: scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The study particularly emphasizes on self-assembled molecules on flat 2D materials and quasi-1D wrinkles. First, we report the preparation of novel 1D C60 nanostructures on rippled graphene. Through careful control of the subtle balance between the linear periodic potential of rippled graphene and the C60 surface mobility, we demonstrate that C60 molecules can be arranged into a 1D C60 chain structure of two to three molecules in width. At a higher annealing temperature, the 1D chain structure transitions to a more closely packed, quasi-1D hexagonal stripe structure. The experimental realization of 1D C60 structures on graphene is, to our knowledge, the first in the field. It could pave the way for fabricating new C60/graphene hybrid structures for future applications in electronics, spintronic and quantum information. Second, we report a study on nano-morphology of potential operative donors (e.g., C60) and acceptors (e.g., perylenetetracarboxylic dianhydride, aka. PTCDA) on wrinkled graphene supported by copper foils. We realize sub-monolayer C60 and PTCDA on quasi-1D and quasi-2D real periodic wrinkled graphene, by carefully controlling the deposition parameters of both molecules. Our successful realization of acceptor-donor binary nanostructures on wrinkled graphene could have important implications in future development of organic solar cells. Third, we report an STM and spectroscopy study on atomically thin transition-metal dichalcogenides (TMDCs) material. TMDCs are emerging 2D materials recently due to their intriguing physical properties and potential applications. In particular, our study focuses on molybdenum disulfide (MoS2) mono- to few-layers and pyramid nanostructures synthesized through chemical vapor deposition. On the few-layered MoS2 nanoplatelets grown on gallium nitride (GaN) and pyramid nanostructures on highly oriented pyrolytic graphite (HOPG), we observe an intriguing curved region near the edge terminals. The measured band gap in these curved regions is consistent with the direct band gap in MoS2 monolayers. The curved features near the edge terminals and the associated electronic properties may contribute to understanding catalytic behaviors of MoS2 nanostructures and have potential applications in future electronic devices and catalysts based on MoS2 nanostructures. Finally, we report a liquid-cell AFM study on the endosomal protein sorting process on the biological lipid membrane. The sorting mechanism relies on complex forming between Tom1 and the cargo sorting protein, Toll interacting protein (Tollip). The induced conformational change in Tollip triggers its dissociation from the lipid membrane and commitment to cargo trafficking. This collaborative study aims at characterizing the dynamic interaction between Tollip and the lipid membrane. To study this process we develop the liquid mode of AFM. We successfully demonstrate that Tollip is localized to the lipid membrane via association with PtdIns3P (PI(3)P), a major phospholipid in the cell membrane involved in protein trafficking. / Ph. D.
3

Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices

Bandyopadhyay, Avra Sankar 12 1900 (has links)
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions. We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.

Page generated in 0.2085 seconds