• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Groundwater inflow into rock tunnels

Chen, Ran 09 November 2010 (has links)
Prediction of groundwater inflow into rock tunnels is one of the essential tasks of tunnel engineering. Currently, most of the methods used in the industry are typically based on continuum models, whether analytical, semi-empirical, or numerical. As a consequence, a regular flow along the tunnel is commonly predicted. There are also some discrete fracture network methods based on a discontinous model, which typically yield regular flow or random flow along the tunnel. However, it was observed that, in hard rock tunnels, flow usually concentrates in some areas, and much of the tunnel is dry. The reason is that, in hard rock, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern. A new method is developed in this work, which can model the fracture clustering and reproduce the flow concentration. After elaborate literature review, a new algorithm is developed to simulate fractures with clustering properties by using geostatistics. Then, a discrete fracture network is built and simplified. In order to solve the flow problem in the discrete fracture network, an existing analytical-numercial method is improved. Two case studies illustrate the procedure of fracture simulation. Several ideal tunnel cases and one real tunnel project are used to validate the flow analysis. It is found that fracture clustering can be modeled and flow concentration can be reproduced by using the proposed technique. / text
2

Risk analysis in tunneling with imprecise probabilities

You, Xiaomin 09 November 2010 (has links)
Due to the inherent uncertainties in ground and groundwater conditions, tunnel projects often have to face potential risks of cost overrun or schedule delay. Risk analysis has become a required tool (by insurers, Federal Transit Administration, etc.) to identify and quantify risk, as well as visualize causes and effects, and the course (chain) of events. Various efforts have been made to risk assessment and analysis by using conventional methodologies with precise probabilities. However, because of limited information or experience in similar tunnel projects, available evidence in risk assessment and analysis usually relies on judgments from experienced engineers and experts. As a result, imprecision is involved in probability evaluations. The intention of this study is to explore the use of the theory of imprecise probability as applied to risk analysis in tunneling. The goal of the methodologies proposed in this study is to deal with imprecise information without forcing the experts to commit to assessments that they do not feel comfortable with or the analyst to pick a single distribution when the available data does not warrant such precision. After a brief introduction to the theory of imprecise probability, different types of interaction between variables are studied, including unknown interaction, different types of independence, and correlated variables. Various algorithms aiming at achieving upper and lower bounds on previsions and conditional probabilities with assumed interaction type are proposed. Then, methodologies have been developed for risk registers, event trees, fault trees, and decision trees, i.e. the standard tools in risk assessment for underground projects. Corresponding algorithms are developed and illustrated by examples. Finally, several case histories of risk analysis in tunneling are revisited by using the methodologies developed in this study. All results obtained based on imprecise probabilities are compared with the results from precise probabilities. / text
3

Modelagem do suporte de túneis com comportamento viscoelástico usando o método dos elementos de contorno. / Numerical modeling of the viscoelastic behavior of shotcrete tunnel linings using the boundary element method.

Társis Rafael Silva Travassos Oliveira 30 November 2009 (has links)
Mesmo com os avanços na aplicação de métodos numéricos em engenharia, a simulação computacional da escavação de túneis ainda apresenta um baixo grau de precisão e de representação. Os modelos de escavação de túneis normalmente utilizam domínios com extensão infinita ou semi-infinita. Esta característica impacta negativamente as simulações numéricas baseadas no Método dos Elementos Finitos (MEF), pois uma superfície fictícia deve ser utilizada para limitar a geometria do modelo. De maneira inversa, a modelagem dos domínios infinitos é naturalmente integrada nos modelos baseados no Método dos Elementos de Contorno (MEC), já que apenas uma representação discreta dos contornos de um modelo precisa ser considerada. Em geral, as simulações computacionais realísticas de obras de túneis envolvem uma combinação de materiais estruturais e geotécnicos como solo, rocha, concreto estrutural, concreto projetado e elementos estruturais metálicos. Assim, os modelos de túneis podem ter camadas de materiais com propriedades diferentes, intactos ou fragmentados. O objetivo deste trabalho é realizar modelagens bidimensionais da estrutura de suporte de túneis com comportamento viscoelástico usando o MEC. O presente desenvolvimento também apresenta um novo algoritmo para simulação da interação maciço-concreto projetado usando uma abordagem pura do MEC. Esta pesquisa está incorporada em um projeto maior, voltado para o desenvolvimento de novos algoritmos para simulações numéricas precisas da escavação de túneis. Os desenvolvimentos anteriormente realizados por Noronha e Pereira (2003), Pereira (2004), Müller (2004) e Carbone (2007) foram fundamentais para o desenvolvimento do presente trabalho. / Despite the progress in numerical methods applied to engineering, computational simulation of tunnel excavation still presents a low degree of accuracy and representativeness. Tunnel excavation models normally use infinite or half-infinite domains. This feature negatively impacts numerical simulations based on the Finite Element Method (FEM), since a fictitious bounding surface must be used to truncate the model geometry. Inversely, infinite domain modeling is intrinsic to the Boundary Element Method (BEM), since it requires a boundary-only representation. A realistic computational simulation of tunnel excavation involves structural and geotechnical materials like rock, structural concrete, shotcrete and rebar rock bolts and anchors. This implies that tunnels models may be composed of layers with different material properties, intact of fragmented. The main goal of this work is to carry out 2D modeling of tunnel support using the BEM and viscoelastic material models. The work also presents a new algorithm to simulate the rock-shotcrete interaction based on a pure-BEM approach. This research is integrated into a bigger study, which integrates new software developments for accurate numerical simulation of tunnel excavation. The previous research development proposed by Noronha and Pereira (2003), Pereira (2004), Müller (2004) and Carbone (2007) were particularly relevant to the present study.
4

Modelagem do suporte de túneis com comportamento viscoelástico usando o método dos elementos de contorno. / Numerical modeling of the viscoelastic behavior of shotcrete tunnel linings using the boundary element method.

Oliveira, Társis Rafael Silva Travassos 30 November 2009 (has links)
Mesmo com os avanços na aplicação de métodos numéricos em engenharia, a simulação computacional da escavação de túneis ainda apresenta um baixo grau de precisão e de representação. Os modelos de escavação de túneis normalmente utilizam domínios com extensão infinita ou semi-infinita. Esta característica impacta negativamente as simulações numéricas baseadas no Método dos Elementos Finitos (MEF), pois uma superfície fictícia deve ser utilizada para limitar a geometria do modelo. De maneira inversa, a modelagem dos domínios infinitos é naturalmente integrada nos modelos baseados no Método dos Elementos de Contorno (MEC), já que apenas uma representação discreta dos contornos de um modelo precisa ser considerada. Em geral, as simulações computacionais realísticas de obras de túneis envolvem uma combinação de materiais estruturais e geotécnicos como solo, rocha, concreto estrutural, concreto projetado e elementos estruturais metálicos. Assim, os modelos de túneis podem ter camadas de materiais com propriedades diferentes, intactos ou fragmentados. O objetivo deste trabalho é realizar modelagens bidimensionais da estrutura de suporte de túneis com comportamento viscoelástico usando o MEC. O presente desenvolvimento também apresenta um novo algoritmo para simulação da interação maciço-concreto projetado usando uma abordagem pura do MEC. Esta pesquisa está incorporada em um projeto maior, voltado para o desenvolvimento de novos algoritmos para simulações numéricas precisas da escavação de túneis. Os desenvolvimentos anteriormente realizados por Noronha e Pereira (2003), Pereira (2004), Müller (2004) e Carbone (2007) foram fundamentais para o desenvolvimento do presente trabalho. / Despite the progress in numerical methods applied to engineering, computational simulation of tunnel excavation still presents a low degree of accuracy and representativeness. Tunnel excavation models normally use infinite or half-infinite domains. This feature negatively impacts numerical simulations based on the Finite Element Method (FEM), since a fictitious bounding surface must be used to truncate the model geometry. Inversely, infinite domain modeling is intrinsic to the Boundary Element Method (BEM), since it requires a boundary-only representation. A realistic computational simulation of tunnel excavation involves structural and geotechnical materials like rock, structural concrete, shotcrete and rebar rock bolts and anchors. This implies that tunnels models may be composed of layers with different material properties, intact of fragmented. The main goal of this work is to carry out 2D modeling of tunnel support using the BEM and viscoelastic material models. The work also presents a new algorithm to simulate the rock-shotcrete interaction based on a pure-BEM approach. This research is integrated into a bigger study, which integrates new software developments for accurate numerical simulation of tunnel excavation. The previous research development proposed by Noronha and Pereira (2003), Pereira (2004), Müller (2004) and Carbone (2007) were particularly relevant to the present study.
5

On reliability-based design of rock tunnel support

Bjureland, William January 2017 (has links)
Tunneling involves large uncertainties. Since 2009, design of rock tunnels in European countries should be performed in accordance with the Eurocodes. The main principle in the Eurocodes is that it must be shown in all design situations that no relevant limit state is exceeded. This can be achieved with a number of different methods, where the most common one is design by calculation. To account for uncertainties in design, the Eurocode states that design by calculation should primarily be performed using limit state design methods, i.e. the partial factor method or reliability-based methods. The basic principle of the former is that it shall be assured that a structure’s resisting capacity is larger than the load acting on the structure, with high enough probability. Even if this might seem straightforward, the practical application of limit state design to rock tunnel support has only been studied to a limited extent. The aim of this licentiate thesis is to provide a review of the practical applicability of using reliability-based methods and the partial factor method in design of rock tunnel support. The review and the following discussion are based on findings from the cases studied in the appended papers. The discussion focuses on the challenges of applying fixed partial factors, as suggested by Eurocode, in design of rock tunnel support and some of the practical difficulties the engineer is faced with when applying reliability-based methods to design rock tunnel support. The main conclusions are that the partial factor method (as defined in Eurocode) is not suitable to use in design of rock tunnel support, but that reliability-based methods have the potential to account for uncertainties present in design, especially when used within the framework of the observational method. However, gathering of data for statistical quantification of input variables along with clarification of the necessary reliability levels and definition of “failure” are needed. / <p>QC 20170407</p>

Page generated in 0.1023 seconds