• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de estruturas de concreto sob o efeito do tempo: uma abordagem consistente com consideração da viscoelasticidade, da plasticidade, da fissuração, da protensão e de etapas construtivas. / Concrete structures analysis under the time effects: an efficient and accurate approach qhich takes into account the viscoelasticity, the plasticity, the cracking, the prestressing and constructions by stages.

Santos, Hudson Chagas dos 25 May 2006 (has links)
Apresenta-se neste trabalho uma metodologia consistente e eficiente para análise de estruturas de concreto sob o efeito do tempo. A metodologia exposta é baseada no Método dos Elementos Finitos (MEF). É mostrado como se analisar estruturas de concreto através do MEF, considerando na equação constitutiva dos elementos, os fenômenos viscoelásticos. A solução para este problema, denominado análise incremental quase-estática, pode ser obtida determinando os campos de tensões, deslocamentos e deformações num dado instante a partir de seus valores conhecidos no instante anterior. Aqui, efetua-se a análise incremental através de um Algoritmo de Integração de Tensões (AIT) com a ajuda de uma rotina computacional baseada no MEF. A Função de Fluência utilizada neste trabalho, além de ser muito eficiente segundo uma metodologia através do MEF, permite facilmente o seu ajuste a quaisquer dados experimentais, ou mesmo aproximar qualquer função de fluência de normas ou códigos. Outra característica crucial é que a integração das tensões não exige o armazenamento computacional de todas as variáveis dependentes do histórico de tensão em um determinado instante, facilitando significantemente a análise ou a retro-análise de estruturas de concreto. Vale ressaltar que ao longo do texto são feitas algumas discussões e comparações do emprego da Função de Fluência proposta com a função da NBR-6118:2003. Também é apresentada uma outra consistente metodologia para a análise de um elemento finito de cabo com escorregamento, onde são discutidas uma formulação geometricamente exata e a implementação computacional de um elemento finito de cabo através do MEF, que permite o escorregamento em presença de atrito. Este elemento fornece procedimentos naturais para simular o processo de montagem e a resposta aos carregamentos de estruturas de cabos em geral, além de ter campos promissores de aplicação no modelamento de estruturas de concreto protendido, das tenso-estruturas e das estruturas de pontes. Também, ao longo do texto são discutidos e apresentados resultados de exemplos elementares com a finalidade de verificar a eficiência da metodologia abordada. / In this work, an efficient and accurate methodology to analyze the effects of time in concrete structures is presented. This methodology is based on the Finite Elements Method (FEM), and it is shown how to perform the finite element analysis on concrete framed structures taking into account the viscoelasticity phenomenon in the formulation of the constitutive equation. The solution for such problem, called quasi-static incremental analysis, may be resolved by establishing the stresses, displacements and deformations fields at specific time from their known values on the previous moment. In this work, the incremental analysis is performed by using an algorithm of stresses integration written into a computational procedure based on the FEM. The Creep Function used in this work, besides being very efficient according to the methodology based on the MEF, it may be, easily, adjusted to any real experiment data or to any creep function presented on codes. Another important characteristic is that such creep function does not demand the computational storage of all the history of stresses variables in a specified time, resulting in an effortless analysis and back-analysis of concrete framed structures. Needless to write that some discussions and judgments against the creep function presented on the NBR-6118:2003 will be performed in order to justify the efficiency of the creep function proposed. Another consistent methodology for the analysis of a fully nonlinear sliding cable element with friction is also presented. It is discussed an accurate geometrically nonlinear formulation and the computational implementation of cable elements based on FEM that incorporates sliding with friction in a simple manner. The cable element may furnish natural procedures to simulate the process of construction assembly, and the results of time-dependent loads on such structures. Furthermore, the presented methodology has promising fields of application in modeling pre-stressed concrete, tensioned cables structures, membranes, stayed and suspended bridges. Along the text, it is presented some examples analysis in order to verify the methodology efficiency.
2

Análise de estruturas de concreto sob o efeito do tempo: uma abordagem consistente com consideração da viscoelasticidade, da plasticidade, da fissuração, da protensão e de etapas construtivas. / Concrete structures analysis under the time effects: an efficient and accurate approach qhich takes into account the viscoelasticity, the plasticity, the cracking, the prestressing and constructions by stages.

Hudson Chagas dos Santos 25 May 2006 (has links)
Apresenta-se neste trabalho uma metodologia consistente e eficiente para análise de estruturas de concreto sob o efeito do tempo. A metodologia exposta é baseada no Método dos Elementos Finitos (MEF). É mostrado como se analisar estruturas de concreto através do MEF, considerando na equação constitutiva dos elementos, os fenômenos viscoelásticos. A solução para este problema, denominado análise incremental quase-estática, pode ser obtida determinando os campos de tensões, deslocamentos e deformações num dado instante a partir de seus valores conhecidos no instante anterior. Aqui, efetua-se a análise incremental através de um Algoritmo de Integração de Tensões (AIT) com a ajuda de uma rotina computacional baseada no MEF. A Função de Fluência utilizada neste trabalho, além de ser muito eficiente segundo uma metodologia através do MEF, permite facilmente o seu ajuste a quaisquer dados experimentais, ou mesmo aproximar qualquer função de fluência de normas ou códigos. Outra característica crucial é que a integração das tensões não exige o armazenamento computacional de todas as variáveis dependentes do histórico de tensão em um determinado instante, facilitando significantemente a análise ou a retro-análise de estruturas de concreto. Vale ressaltar que ao longo do texto são feitas algumas discussões e comparações do emprego da Função de Fluência proposta com a função da NBR-6118:2003. Também é apresentada uma outra consistente metodologia para a análise de um elemento finito de cabo com escorregamento, onde são discutidas uma formulação geometricamente exata e a implementação computacional de um elemento finito de cabo através do MEF, que permite o escorregamento em presença de atrito. Este elemento fornece procedimentos naturais para simular o processo de montagem e a resposta aos carregamentos de estruturas de cabos em geral, além de ter campos promissores de aplicação no modelamento de estruturas de concreto protendido, das tenso-estruturas e das estruturas de pontes. Também, ao longo do texto são discutidos e apresentados resultados de exemplos elementares com a finalidade de verificar a eficiência da metodologia abordada. / In this work, an efficient and accurate methodology to analyze the effects of time in concrete structures is presented. This methodology is based on the Finite Elements Method (FEM), and it is shown how to perform the finite element analysis on concrete framed structures taking into account the viscoelasticity phenomenon in the formulation of the constitutive equation. The solution for such problem, called quasi-static incremental analysis, may be resolved by establishing the stresses, displacements and deformations fields at specific time from their known values on the previous moment. In this work, the incremental analysis is performed by using an algorithm of stresses integration written into a computational procedure based on the FEM. The Creep Function used in this work, besides being very efficient according to the methodology based on the MEF, it may be, easily, adjusted to any real experiment data or to any creep function presented on codes. Another important characteristic is that such creep function does not demand the computational storage of all the history of stresses variables in a specified time, resulting in an effortless analysis and back-analysis of concrete framed structures. Needless to write that some discussions and judgments against the creep function presented on the NBR-6118:2003 will be performed in order to justify the efficiency of the creep function proposed. Another consistent methodology for the analysis of a fully nonlinear sliding cable element with friction is also presented. It is discussed an accurate geometrically nonlinear formulation and the computational implementation of cable elements based on FEM that incorporates sliding with friction in a simple manner. The cable element may furnish natural procedures to simulate the process of construction assembly, and the results of time-dependent loads on such structures. Furthermore, the presented methodology has promising fields of application in modeling pre-stressed concrete, tensioned cables structures, membranes, stayed and suspended bridges. Along the text, it is presented some examples analysis in order to verify the methodology efficiency.
3

Análise não linear de sólidos viscoelásticos bidimensionais: implementação em elementos finitos e contribuição para aplicação a túneis. / Nonlinear analysis of two-dimensional viscoelastic solid: finite element implementation and contribution for practical application in tunnels.

Cassares, Kamila Rodrigues 01 March 2011 (has links)
O objetivo deste trabalho é aplicar uma formulação viscoelástica bidimensional sob não linearidade geométrica para estado plano de deformação baseada em grandezas energicamente conjugadas a partir do gradiente da transformação e do primeiro tensor das tensões de Piola- Kirchhoff. Esta formulação viscoelástica é composta pela equação constitutiva hiperelástica de Kircchoff- Saint Venant e a função de fluência do modelo viscoelástico de Kelvin-Voigt. A formulação é aplicada em análises numéricas com método dos elementos finitos. Para tal aplicação, foi proposto o uso de elementos triangulares T6 que não apresentaram o fenômeno de travamento e são adequados para a utilização em malhas não estruturadas. Esta implementação foi aplicada para prever deslocamentos no concreto projetado de túneis. / The objective of this work is to apply a geometrically nonlinear two-dimensional viscoelastic formulation for plane strain where deformation gradient is energetically conjugated with first Piola-Kircchoff stress tensor. This formulation is from constitutive equation St. Venant Kirchhoff and creep compliance Kelvin-Voigt rheological model. This is applied in numerical analysis with finite element method. Use of triangular elements was proposed. Locking is not observed in numerical examples and this kind of element is appropriate for use in unstructured mesh. Displacement prediction of shotcrete support in a tunnel was made with this formulation and excellent results were found.
4

Modelagem do suporte de túneis com comportamento viscoelástico usando o método dos elementos de contorno. / Numerical modeling of the viscoelastic behavior of shotcrete tunnel linings using the boundary element method.

Társis Rafael Silva Travassos Oliveira 30 November 2009 (has links)
Mesmo com os avanços na aplicação de métodos numéricos em engenharia, a simulação computacional da escavação de túneis ainda apresenta um baixo grau de precisão e de representação. Os modelos de escavação de túneis normalmente utilizam domínios com extensão infinita ou semi-infinita. Esta característica impacta negativamente as simulações numéricas baseadas no Método dos Elementos Finitos (MEF), pois uma superfície fictícia deve ser utilizada para limitar a geometria do modelo. De maneira inversa, a modelagem dos domínios infinitos é naturalmente integrada nos modelos baseados no Método dos Elementos de Contorno (MEC), já que apenas uma representação discreta dos contornos de um modelo precisa ser considerada. Em geral, as simulações computacionais realísticas de obras de túneis envolvem uma combinação de materiais estruturais e geotécnicos como solo, rocha, concreto estrutural, concreto projetado e elementos estruturais metálicos. Assim, os modelos de túneis podem ter camadas de materiais com propriedades diferentes, intactos ou fragmentados. O objetivo deste trabalho é realizar modelagens bidimensionais da estrutura de suporte de túneis com comportamento viscoelástico usando o MEC. O presente desenvolvimento também apresenta um novo algoritmo para simulação da interação maciço-concreto projetado usando uma abordagem pura do MEC. Esta pesquisa está incorporada em um projeto maior, voltado para o desenvolvimento de novos algoritmos para simulações numéricas precisas da escavação de túneis. Os desenvolvimentos anteriormente realizados por Noronha e Pereira (2003), Pereira (2004), Müller (2004) e Carbone (2007) foram fundamentais para o desenvolvimento do presente trabalho. / Despite the progress in numerical methods applied to engineering, computational simulation of tunnel excavation still presents a low degree of accuracy and representativeness. Tunnel excavation models normally use infinite or half-infinite domains. This feature negatively impacts numerical simulations based on the Finite Element Method (FEM), since a fictitious bounding surface must be used to truncate the model geometry. Inversely, infinite domain modeling is intrinsic to the Boundary Element Method (BEM), since it requires a boundary-only representation. A realistic computational simulation of tunnel excavation involves structural and geotechnical materials like rock, structural concrete, shotcrete and rebar rock bolts and anchors. This implies that tunnels models may be composed of layers with different material properties, intact of fragmented. The main goal of this work is to carry out 2D modeling of tunnel support using the BEM and viscoelastic material models. The work also presents a new algorithm to simulate the rock-shotcrete interaction based on a pure-BEM approach. This research is integrated into a bigger study, which integrates new software developments for accurate numerical simulation of tunnel excavation. The previous research development proposed by Noronha and Pereira (2003), Pereira (2004), Müller (2004) and Carbone (2007) were particularly relevant to the present study.
5

Modelagem do suporte de túneis com comportamento viscoelástico usando o método dos elementos de contorno. / Numerical modeling of the viscoelastic behavior of shotcrete tunnel linings using the boundary element method.

Oliveira, Társis Rafael Silva Travassos 30 November 2009 (has links)
Mesmo com os avanços na aplicação de métodos numéricos em engenharia, a simulação computacional da escavação de túneis ainda apresenta um baixo grau de precisão e de representação. Os modelos de escavação de túneis normalmente utilizam domínios com extensão infinita ou semi-infinita. Esta característica impacta negativamente as simulações numéricas baseadas no Método dos Elementos Finitos (MEF), pois uma superfície fictícia deve ser utilizada para limitar a geometria do modelo. De maneira inversa, a modelagem dos domínios infinitos é naturalmente integrada nos modelos baseados no Método dos Elementos de Contorno (MEC), já que apenas uma representação discreta dos contornos de um modelo precisa ser considerada. Em geral, as simulações computacionais realísticas de obras de túneis envolvem uma combinação de materiais estruturais e geotécnicos como solo, rocha, concreto estrutural, concreto projetado e elementos estruturais metálicos. Assim, os modelos de túneis podem ter camadas de materiais com propriedades diferentes, intactos ou fragmentados. O objetivo deste trabalho é realizar modelagens bidimensionais da estrutura de suporte de túneis com comportamento viscoelástico usando o MEC. O presente desenvolvimento também apresenta um novo algoritmo para simulação da interação maciço-concreto projetado usando uma abordagem pura do MEC. Esta pesquisa está incorporada em um projeto maior, voltado para o desenvolvimento de novos algoritmos para simulações numéricas precisas da escavação de túneis. Os desenvolvimentos anteriormente realizados por Noronha e Pereira (2003), Pereira (2004), Müller (2004) e Carbone (2007) foram fundamentais para o desenvolvimento do presente trabalho. / Despite the progress in numerical methods applied to engineering, computational simulation of tunnel excavation still presents a low degree of accuracy and representativeness. Tunnel excavation models normally use infinite or half-infinite domains. This feature negatively impacts numerical simulations based on the Finite Element Method (FEM), since a fictitious bounding surface must be used to truncate the model geometry. Inversely, infinite domain modeling is intrinsic to the Boundary Element Method (BEM), since it requires a boundary-only representation. A realistic computational simulation of tunnel excavation involves structural and geotechnical materials like rock, structural concrete, shotcrete and rebar rock bolts and anchors. This implies that tunnels models may be composed of layers with different material properties, intact of fragmented. The main goal of this work is to carry out 2D modeling of tunnel support using the BEM and viscoelastic material models. The work also presents a new algorithm to simulate the rock-shotcrete interaction based on a pure-BEM approach. This research is integrated into a bigger study, which integrates new software developments for accurate numerical simulation of tunnel excavation. The previous research development proposed by Noronha and Pereira (2003), Pereira (2004), Müller (2004) and Carbone (2007) were particularly relevant to the present study.
6

Análise não linear de sólidos viscoelásticos bidimensionais: implementação em elementos finitos e contribuição para aplicação a túneis. / Nonlinear analysis of two-dimensional viscoelastic solid: finite element implementation and contribution for practical application in tunnels.

Kamila Rodrigues Cassares 01 March 2011 (has links)
O objetivo deste trabalho é aplicar uma formulação viscoelástica bidimensional sob não linearidade geométrica para estado plano de deformação baseada em grandezas energicamente conjugadas a partir do gradiente da transformação e do primeiro tensor das tensões de Piola- Kirchhoff. Esta formulação viscoelástica é composta pela equação constitutiva hiperelástica de Kircchoff- Saint Venant e a função de fluência do modelo viscoelástico de Kelvin-Voigt. A formulação é aplicada em análises numéricas com método dos elementos finitos. Para tal aplicação, foi proposto o uso de elementos triangulares T6 que não apresentaram o fenômeno de travamento e são adequados para a utilização em malhas não estruturadas. Esta implementação foi aplicada para prever deslocamentos no concreto projetado de túneis. / The objective of this work is to apply a geometrically nonlinear two-dimensional viscoelastic formulation for plane strain where deformation gradient is energetically conjugated with first Piola-Kircchoff stress tensor. This formulation is from constitutive equation St. Venant Kirchhoff and creep compliance Kelvin-Voigt rheological model. This is applied in numerical analysis with finite element method. Use of triangular elements was proposed. Locking is not observed in numerical examples and this kind of element is appropriate for use in unstructured mesh. Displacement prediction of shotcrete support in a tunnel was made with this formulation and excellent results were found.

Page generated in 0.1168 seconds