• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 9
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Analysis, and Development of a Tripod Film Cooling Hole Design for Reduced Coolant Usage

Leblanc, Christopher N. 17 December 2012 (has links)
This research has a small portion focused on interior serpentine channels, with the primary focus on improving the effectiveness of the film cooling technique through the use of a new approach to film cooling. This new approach uses a set of three holes sharing the same inlet and diverging from the central hole to form a three-legged, or tripod, design. The tripod design is examined in depth, in terms of geometric variations, through the use of flat plate and cascade rigs, with both transient and steady-state experiments. The flat plate tests provide a simplified setting in which to test the design in comparison to other geometries, and establish a baseline performance in a simple flow field that does not have the complications of surface curvature or mainstream pressure gradients. Cascade tests allow for testing of the design in a more realistic setting with curved surfaces and mainstream pressure gradients, providing important information about the performance of the design on suction and pressure surfaces of airfoils. Additionally, the cascade tests allow for an investigation into the aerodynamic penalties associated with the injection hole designs at various flow rates. Through this procedure the current state of film cooling technology may be improved, with more effective surface coverage achieved with reduced coolant usage, and with reduced performance penalties for the engine as a whole. This research has developed a new film hole design that is manufacturable and durable, and provides a detailed analysis of its performance under a variety of flow conditions. This cooling hole design provides 40% higher cooling effectiveness while using 50% less coolant mass flow. The interior serpentine channel research provides comparisons between correlations and experiments for internal passages with realistic cross sections. / Ph. D.
2

Study Of Heat Transfer Characteristics Of Impinging Air Jet Using Pressure Andn Temperature Sensitive Luminescent Paint

Liu, Quan 01 January 2006 (has links)
Luminescent coating measurement system is a relatively new technology for quantitative pressure and temperature measurement. Usually referred to as Pressure Sensitive Paint (PSP) and Temperature Sensitive Paint (TSP), luminescent coatings contain sensor molecules, which undergoes a luminescent transition when excited with light of proper wavelength. The reaction is pressure and/or temperature sensitive. The image of TSP or PSP coated model surface can be captured with a scientific grade camera and then processed to obtain full field temperature and pressure distribution with very high fidelity. The preparation time of the technique is short. The measurement system offers an economic alternative to conventional testing methods using large number of pressure taps and thermocouples. The purpose of the experiment in this thesis is to take the benefits of the TSP and PSP technique, develop a well-controlled process and then apply the technique for a fundamental study on jet impingement heat transfer. First, Uni-Coat TSP and Binary-FIB PSP purchased from ISSI Inc. are calibrated to high accuracy. The calibration uncertainty of TSP and PSP are found to be ±0.93 °C and ±0.12 psi over temperature and pressure ranges of 22 to 90 ° C and 5 to 14.7 psia, respectively. The photodegradation of TSP is then investigated with the same calibration system. The photodegradation refers to the phenomenon of decreasing emission intensity as the luminescent paint is exposed to the illumination light during testing. It was found that photodegradation rate is a strong function of temperature and the optical power of illumination lighting. The correlation developed in this work is expected to compensate the degradation of TSP to achieve high measurement accuracy. Both TSP and PSP were then applied in the flow and heat transfer measurement of single round impinging air jet. Various separation distance (Z/D) and jet Reynolds number are tested. Pressure measurement on the jet impinged target surface using PSP clearly shows the boundary of jet impingement zone, which broadens with separation distance. In heat transfer experiment using TSP, the "second peak" in local heat transfer occurring at radial distance r/D around 2 is clearly observed when the separation distance Z/D is shorter than the length of jet potential core. The slight variation in radial location and the amplitude of the "second peak" are captured as Z/D and jet Reynolds number change. The optimum Z/D of stagnation point heat transfer is found to be around 5. The effect of jet nozzle configuration is investigated. It is found that the heat transfer rate associated with "tube jet" is generally higher than that of "plate jet". The difference in heat transfer between the two jet configurations is related to the weaker entrainment effect associated with "plate jet", where the entrainment of surrounding air is confined by the injection plate, especially under small Z/D circumstances. When compared with the benchmark data in the literature, the averaged heat transfer data of "tube jet" matches the empirical data better than those of "plate jet". The maximum difference is 3.3% for tube jet versus 15.4% for plate jet at Reynolds number of 60000 and Z/D of 5. The effect of surface roughness on jet impingement heat transfer is also studied. Heat transfer can be significantly increased by the enhanced roughness of the target surface. The largest roughness effect is achieved near stagnation point at high jet Reynolds number. Compared to the heat transfer to a smooth plate, as high as 30.9% increase in area-averaged Nusselt number is observed over a rough surface at r/D=1.5 and jet Reynolds number of 60000. The most significant advance of the present work is that both temperature and pressure measurement be obtained with the same measurement system and with accuracy comparable to traditional testing methods. The procedures that were employed in this work should be easy to apply in any university or industrial testing facility. It provides a rapid testing tool that can help solve complex problems in aerodynamics and heat transfer
3

Heat Transfer Augmentation Surfaces Using Modified Dimples/Protrusions

Elyyan, Mohammad Ahmad 25 January 2009 (has links)
This work presents direct and large eddy simulations of a wide range of heat augmentation surfaces roughened by modified dimples/protrusions. The dissertation is composed of two main parts: Part I (Chapters 2-4) for compact heat exchangers and Part II (Chapter 5) for internal cooling of rotating turbine blades. Part I consists of three phases: Phase I (Chapter 2) investigates flow structure and heat transfer distribution in a channel with dimples/protrusions; Phase II (Chapter 3) studies the application of dimples as surface roughness on plain fins; and Phase III (Chapter 4) considers a new fin shape, the split-dimple fin, that is based on modifying the conventional dimple shape. Chapter 2 presents direct and large eddy simulations conducted of a fin bank over a wide range of Reynolds numbers, ReH=200-15,000, covering the laminar to fully turbulent flow regimes and using two channel height geometries. While the smaller fin pitch channel has better performance in the low to medium Reynolds number range, both channel heights show similar trends in the fully turbulent regime. Moreover, analysis of the results shows that vortices generated in the dimple cavity and at the dimple rim contribute substantially to heat transfer from the dimpled surface, whereas flow impingement and acceleration between protrusions contribute substantially on the protrusion side. Chapter 3 considers applying dimples as surface roughness on plain fin surfaces to further enhance heat transfer from the fin. Three fin geometries that consider dimple imprint diameter effect and perforation effect are considered. The dimple imprint diameter has a minimal effect on the flow and heat transfer of the fin. However, the introduction of perforation in the dimple significantly changes the flow structure and heat transfer on the dimple side of the fin by eliminating recirculation regions in the dimple and generating higher intensity vortical structures. Chapter 4 presents a novel fin shape, the split-dimple fin, which consists of half a dimple and half a protrusion with an opening between them. The split dimple provides an additional mechanism for augmenting heat transfer by perturbing continuous boundary layer formation on the fin surface and generating energetic shear layers. While the protruding geometry of the split dimple augments heat transfer profoundly, it also increase pressure drop. The split dimple fin results in heat conductance that is 60–175% higher than a plain fin, but at a cost of 4–8 times the frictional losses. Chapter 5 studies the employment of dimples/protrusions on opposite sides for internal cooling of rotating turbine blades. Two geometries with two dimple/protrusion depths are investigated over a wide range of rotation numbers, Rob=-0.77 to 1.10. Results show that the dimple side is more sensitive to the destabilizing forces on the trailing surface, while both react similarly to the stabilizing effect on the leading side. It is concluded that placing the protrusion on the trailing side for low rotation number, |Rob|<0.2, provides better performance, while it is more beneficial to place the dimple side on the trailing side for higher rotation numbers. / Ph. D.
4

Experimental simulation and mitigation of contaminant deposition on film cooled gas turbine airfoils

Albert, Jason Edward 09 June 2011 (has links)
Deposition of contaminant particles on gas turbine surfaces reduces the aerodynamic and cooling efficiency of the turbine and degrades its materials. Gas turbine designers seek a better understanding of this complicated phenomenon and how to mitigate its effects on engine efficiency and durability. The present study developed an experimental method in wind tunnel facilities to simulate the important physical aspects of the interaction between deposition and turbine cooling, particularly film cooling. This technique consisted of spraying molten wax droplets into the mainstream flow that would deposit and solidify on large scale, cooled, turbine airfoil models in a manner consistent with inertial deposition on turbine surfaces. The wax particles were sized to properly simulate the travel of particles in the flow path, and their adhesion to the surface was modeled by ensuring they remained at least partially molten upon impact. Initial development of this wax spray technique was performed with a turbine blade leading edge model with three rows of showerhead film cooling. It was then applied to turbine vane models with showerhead holes and row on pressure side consisting of either standard cylindrical holes or similar holes situated in a spanwise, recessed trench. Vane models were either approximately adiabatic or had a thermal conductivity selected to simulate the conjugate heat transfer of turbine airfoils at engine conditions. These models were also used to measure the adiabatic film effectiveness and overall cooling effectiveness in order to better assess how the cooling design interacted with deposition. Deposit growth was found to be sensitive to the mainstream air and the model surface temperatures and the solidification temperature of the wax. Deposits typically grew to an equilibrium thickness caused by a balance between erosion and adhesion. The existence of film cooling substantially redistributed deposit growth, but changes in blowing ratio had a minor effect. A hypothesis was proposed and substantiated for the physical mechanisms governing wax deposit growth, and its applicability to engine situations was discussed. / text
5

Improving Deposition Modeling Through an Investigation of Absolute Pressure Effects and a Novel Conjugate Mesh Morphing Framework

Bowen, Christopher P. 01 October 2021 (has links)
No description available.
6

Heat Transfer in Stationary and Rotating Coolant Channels Using a Transient Liquid Crystal Technique

Lamont, Justin Andrew 27 November 2012 (has links)
Heat transfer inside rotating coolant channels have a significant impact in design of gas turbine airfoils and other rotating components such as generator windings.  The effects of the Coriolis acceleration and centrifugal buoyancy have a significant impact on heat transfer behavior inside such rotating coolant channels due to the complex flow patterns of coolant.  Detailed heat transfer knowledge greatly enhances the designers\' ability to validate numerical models of newly designed channels. A rotating experimental rig was designed and built to model scaled up coolant channels at speeds up to 750 rotations per minute (rpm).  A camera is mounted onto the rotating test section and a transient liquid crystal technique is used to measure detailed heat transfer coefficients on a surface of interest.  The experimental set-up is innovative, as it involves no surface heating of the test section, very little instrumentation beyond a few thermocouples and a spray coating of thermochromic liquid crystals on the test surface.  To validate the test rig and the experimental method, multipass coolant channels with rib turbulators, large diameter radially outward channels with rib turbulators, and jet impingement cooling schemes are studied during rotation.  90deg, W, and M-shaped rib enhancements are studied and detailed heat transfer measurements clearly capture the heat transfer enhancement mechanisms with and without rotation.  Jet impingement schemes with single and double rows, normal and off-angle jets, and a cross flow outlet condition are all studied under rotation.  Non-rotating studies are also performed for baseline comparisons to rotating conditions.  Large aspect ratio, diverging channels with dimple and rib turbulators are studied in a stationary condition.  Results for all different test geometries show good comparisons with published studies indicating that the rotating rig and experimental method are valid.  Jet impingement schemes produce higher heat transfer compared to the two-pass channels with ribs, however pressure losses are significantly higher.  The fewer the jets and H/d=1 produces the highest pressure losses with no significant gain in heat transfer.  Off angle jets at H/d=1 produces very high pressure losses with no heat transfer advantage.  A final study with radially outward coolant channels is performed with the highest rotation speeds.  The structure, test section, and camera are thoroughly designed to withstand the exceptional g-forces.  Heat transfer in the radial channels with and without rotation show very little effect of rotation due to the small rotation number. / Ph. D.
7

A Performance Study of a Super-cruise Engine with Isothermal Combustion inside the Turbine

Chiu, Ya-Tien 05 January 2005 (has links)
Current thinking on the best propulsion system for a next-generation supersonic cruising (Mach 2 to Mach 4) aircraft is a mixed-flow turbofan engine with afterburner. This study investigates the performance increase of a turbofan engine through the use of isothermal combustion inside the high-pressure turbine (High-Pressure Turburner, HPTB) as an alternative form of thrust augmentation. A cycle analysis computer program is developed for accurate prediction of the engine performance and a supersonic transport cruising at Mach 2 at 60,000 ft is used to demonstrate the merit of using a turburner. When assuming no increase in turbine cooling flow is needed, the engine with HPTB could provide either 7.7% increase in cruise range or a 41% reduction in engine mass flow when compared to a traditional turbofan engine providing the sane thrust. If the required cooling flow in the turbine is almost doubled, the new engine with HPTB could still provide a 4.6% increase in range or 33% reduction in engine mass flow. In fact, the results also show that the degradation of engine performance because of increased cooling flow in a turburner is less than half of the degradation of engine performance because of increased cooling flow in a regular turbine. Therefore, a turbofan engine with HPTB will still easily out-perform a traditional turbofan when even more cooling than currently assumed is introduced. Closer examination of the simulation results in off-design regimes also shows that the new engine not only satisfies the thrust and efficiency requirement at the design cruise point, but also provides enough thrust and comparable or better efficiency in all other flight regimes such as transonic acceleration and take-off. Another finding is that the off-design bypass ratio of the new engine increases slower than a regular turbofan as the aircraft flies higher and faster. This behavior enables the new engine to maintain higher thrust over a larger flight envelope, crucial in developing faster air-breathing aircraft for the future. As a result, an engine with HPTB provides significant benefit both at the design point and in the off-design regimes, allowing smaller and more efficient engines for supersonic aircraft to be realized. / Ph. D.
8

Detailed Experimental Measurements of Heat Transfer Augmentation in Internal Channels Using a Thermochromic Liquid Crystal Technique

Tyagi, Kartikeya 22 June 2015 (has links)
Design of internal cooling channels for gas turbine blade is critical to system performance. To achieve maximum efficiency, i.e. maximum cooling with minimum coolant usage, intensive research is required to optimize heat transfer enhancement features. The present study aims at experimental and numerical investigation of two heat transfer augmentation techniques for internal cooling, viz. dimple and swirl induced jet impingement. Dimples are suitable candidates for high performance enhancement as they impose a low pressure drop penalty. The present study aims at experimentally measuring heat transfer on all the walls of diamond, triangular, square and cylindrical shaped dimples in a staggered configuration at three flow conditions in a high aspect ratio channel. A thermal-hydraulic performance factor was evaluated to characterize each dimple shape. Numerical simulations were conducted to visualize flow patterns which was correlated with heat transfer distribution. The results were in good agreement with previous studies. Triangular dimples showed the highest overall performance due to lowest pressure drop penalty, but heat transfer was low inside the dimples. In rotating channels, Coriolis Effect and centrifugal buoyancy significantly affect heat transfer distribution. There is a need to develop a cooling geometry that benefits from rotation and provides consistent cooling. A new geometry was derived from a past study, consisting of two channels divided by a wall with angled holes to provide jet impingement from inlet to outlet channel. Liquid crystal technique was used for heat transfer measurements. It was found that at high rotational speeds, heat transfer increased in the inlet channel, while it decreased in the outlet channel. Additional testing at even higher speeds may provide insight into replacing a traditional U-bend channel in a turbine blade. / Master of Science
9

Experimental investigation of film cooling and thermal barrier coatings on a gas turbine vane with conjugate heat transfer effects

Kistenmacher, David Alan 19 November 2013 (has links)
In the United States, natural gas turbine generators account for approximately 7% of the total primary energy consumed. A one percent increase in gas turbine efficiency could result in savings of approximately 30 million dollars for operators and, subsequently, electricity end-users. The efficiency of a gas turbine engine is tied directly to the temperature at which the products of combustion enter the first stage, high-pressure turbine. The maximum operating temperature of the turbine components’ materials is the major limiting factor in increasing the turbine inlet temperature. In fact, current turbine inlet temperatures regularly exceed the melting temperature of the turbine vanes through advanced vane cooling techniques. These cooling techniques include vane surface film cooling, internal vane cooling, and the addition of a thermal barrier coating (TBC) to the exterior of the turbine vane. Typically, the performance of vane cooling techniques is evaluated using the adiabatic film effectiveness. However, the adiabatic film effectiveness, by definition, does not consider conjugate heat transfer effects. In order to evaluate the performance of internal vane cooling and a TBC it is necessary to consider conjugate heat transfer effects. The goal of this study was to provide insight into the conjugate heat transfer behavior of actual turbine vanes and various vane cooling techniques through experimental and analytical modeling in the pursuit of higher turbine inlet temperatures resulting in higher overall turbine efficiencies. The primary focus of this study was to experimentally characterize the combined effects of a TBC and film cooling. Vane model experiments were performed using a 10x scaled first stage inlet guide vane model that was designed using the Matched Biot Method to properly scale both the geometrical and thermal properties of an actual turbine vane. Two different TBC thicknesses were evaluated in this study. Along with the TBCs, six different film cooling configurations were evaluated which included pressure side round holes with a showerhead, round holes only, craters, a novel trench design called the modified trench, an ideal trench, and a realistic trench that takes manufacturing abilities into account. These film cooling geometries were created within the TBC layer. Each of the vane configurations was evaluated by monitoring a variety of temperatures, including the temperature of the exterior vane wall and the exterior surface of the TBC. This study found that the presence of a TBC decreased the sensitivity of the thermal barrier coating and vane wall interface temperature to changes in film coolant flow rates and changes in film cooling geometry. Therefore, research into improved film cooling geometries may not be valuable when a TBC is incorporated. This study also developed an analytical model which was used to predict the performance of the TBCs as a design tool. The analytical prediction model provided reasonable agreement with experimental data when using baseline data from an experiment with another TBC. However, the analytical prediction model performed poorly when predicting a TBC’s performance using baseline data collected from an experiment without a TBC. / text
10

Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling

Reding, Brian D., II 27 September 2013 (has links)
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.

Page generated in 0.0869 seconds