Spelling suggestions: "subject:"turbines à gaz -- combustion"" "subject:"turbines à gaz -- ombustion""
1 |
Exploration of novel fuels for gas turbine (ENV-406) : modeling of T60 test rig with diesel & biodiesel fuelsYoussef, Moafaq Mohamed 20 April 2018 (has links)
Dans cette thèse, un modèle numérique a été proposé pour simuler la combustion liquide des carburants conventionnels et non-conventionnels, en particulier le mélange de biodiesel B20. La matrice de test numérique constitue de quatre cas d’écoulement réactifs c.à.d. avec combustion et d’un cinquième avec injection liquide sans combustion (écoulement non-réactif). Les modèles sont calculés à l’aide du logiciel FLUENT™ v.14 en 3D et a l’état stationnaire. Les flammes de diffusion turbulentes sont modélisées en utilisant l’approche de flammelette laminaire stable, avec une fonction de densité de probabilité jointe (PDF). La Validation est effectuée en comparant les mesures expérimentales disponibles avec les résultats obtenus de la CFD. L’aérodynamique de la chambre de combustion, ainsi que les températures de parois extérieures sont captures avec un degré de précision satisfaisant. La validation des principaux produits de combustion, tels que : CO2, H2O et O2, montre des résultats satisfaisants pour tous les cas d'écoulement réactifs, mais certaines incohérences ont été relevées pour les émissions de CO. On pense que le banc d'essai (la géométrie de la chambre de combustion et son état de fonctionnement) n'est pas suffisamment adéquat pour la combustion de combustibles liquides. D’autre part, et d’un point de vue numérique, l’approche de flammelette laminaire stable a été trouvé raisonnablement hors mesure de saisir les effets profonds du non-équilibre chimique qui sont souvent associés au processus de lente formation d’un polluant, comme le CO. / In this thesis, a CFD model was proposed to simulate the liquid combustion of conventional and non-conventional biodiesel fuels, in particularly the B20 biodiesel blend. The numerical test matrix consists of four reacting flow cases, and one non-reacting liquid fuel injection case. The models are computed using FLUENT™ v.14 in a 3D steady-state fashion. The turbulent non-premixed diffusion flames are modeled using the steady laminar flamelet approach; with a joint presumed Probability density function (PDF) distribution. Validation is achieved by comparing available experimental measurements with the obtained CFD results. Combustor aerodynamics and the outer wall temperatures are captured with a satisfactory degree of accuracy. Validation of the main combustion products, such as: CO2, H2O, and O2, shows satisfactory results for all the reacting flow cases; however, some inconsistencies were found for the CO emissions. It is believed that the test rig (combustor geometry and operating condition) is not sufficiently adequate for burning liquid fuels. On the other hand, from a numerical combustion point of view, the steady laminar flamelet approach was found not reasonably able to capture the deep non-equilibrium effects associated with the slow formation process of a pollutant, such as CO.
|
2 |
Numerical simulations of stationary and transient spray combustion for aircraft gas turbine applicationsFossi, Alain 24 April 2018 (has links)
Le développement des turbines à gaz d’aviation actuelles et futures est principalement axé sur la sécurité, la performance, la minimisation de la consommation de l’énergie, et de plus en plus sur la réduction des émissions d’espèces polluantes. Ainsi, les phases de design de moteurs sont soumises auxaméliorations continues par des études expérimentales et numériques. La présente thèse se consacre à l’étude numérique des phases transitoires et stationnaires de la combustion au sein d’une turbine à gaz d’aviation opérant à divers modes de combustion. Une attention particulière est accordée à la précision des résultats, aux coûts de calcul, et à la facilité de manipulation de l’outil numérique d’un point de vue industriel. Un code de calcul commercial largement utilisé en industrie est donc choisi comme outil numérique. Une méthodologie de Mécanique des Fluides Numériques (MFN) constituée de modèles avancés de turbulence et de combustion jumelés avec un modèle d’allumage sous-maille, est formulé pour prédire les différentes phases de la séquence d’allumage sous différentes conditions d’allumage par temps froid et de rallumage en altitude, ainsi que les propriétés de la flamme en régime stationnaire. Dans un premier temps, l’attention est focalisée sur le régime de combustion stationnaire. Trois méthodologies MFN sont formulées en exploitant trois modèles de turbulence, notamment, le modèle basé sur les équations moyennées de Navier-Stokes instationnaires (URANS), l’adaptation aux échelles de l’écoulement (SAS), et sur la simulation aux grandes échelles (LES). Pour évaluer la pertinence de l’incorporation d’un modèle de chimie détaillée ainsi que celle des effets de chimie hors-équilibre, deux différentes hypothèses sont considérées : l’hypothèse de chimie-infiniment-rapide à travers le modèle d’équilibre-partiel, et l’hypothèse de chimie-finie via le modèle de flammelettes de diffusion. Pour chacune des deux hypothèses, un carburant à une composante, et un autre à deux composantes sont utilisés comme substituts du kérosène (Jet A-1). Les méthodologies MFN résultantes sont appliquées à une chambre de combustion dont l’écoulement est stabilisé par l’effet swirl afin d’évaluer l’aptitude de chacune d’elle à prédire les propriétés de combustion en régime stationnaire. Par la suite, les rapports entre le coût de calcul et la précision des résultats pour les trois méthodologies MFN formulées sont explicitement comparés. La deuxième étude intermédiaire est dédiée au régime de combustion transitoire, notamment à la séquence d’allumage précédant le régime de combustion stationnaire. Un brûleur de combustibles gazeux, muni d’une bougie d’allumage, et dont la flamme est stabilisée par un accroche-flamme, est utilisé pour calibrer le modèle MFN formulé. Ce brûleur, de géométrie relativement simple, peut aider à la compréhension des caractéristiques d’écoulements réactifs complexes, en l’occurrence l’allumabilité et la stabilité. La méthodologie MFN la plus robuste issue de la précédente étude est reconsidérée. Puisque le brûleur fonctionne en mode partiellement pré-mélangé, le modèle de combustion paramétré par la fraction de mélange et la variable de progrès est adopté avec les hypothèses de chimie-infiniment-rapide et de chimie-finie, respectivement à travers le modèle de Bray-Moss-Libby (BML) et un modèle de flammelettes multidimensionnel (FGM). Le modèle d’allumage sous-maille est préalablement ajusté via l’implémentation des propriétés de la flamme considérée. Par la suite, le modèle d’allumage est couplé au solveur LES, puis successivement aux modèles BML et FGM. Pour évaluer les capacités prédictives des méthodologies résultantes, ces dernières sont utilisées pour prédire les évènements d’allumage résultant d’un dépôt d’énergie par étincelles à diverses positions du brûleur, et les résultats sont qualitativement et quantitativement validés en comparant ceux-ci à leurs homologues expérimentaux. Finalement, la méthodologie MFN validée en configuration gazeuse est étendue à la combustion diphasique en la couplant au module de la phase liquide, et en incorporant les propriétés de la flamme de kérosène dans le modèle d’allumage. La méthodologie MFN résultant de cette adaptation, est préalablement appliquée à la chambre de combustion étudiée antérieurement, pour prédire la séquence d’allumage et améliorer les prédictions antérieures des propriétés de la flamme en régime stationnaire. Par la suite, elle est appliquée à une chambre de combustion plus réaliste pour prédire des évènements d’allumage sous différentes conditions d’allumage par temps froid, et de rallumage en altitude. L’aptitude de la nouvelle méthodologie MFN à prédire les deux types d’allumage considérés est mesurée quantitativement et qualitativement en confrontant les résultats des simulations numériques avec les enveloppes d’allumage expérimentales et les images d’une séquence d’allumage enregistrée avec une caméra infrarouge. / The development of current and future aero gas turbine engines is mainly focused on the safety, the performance, the energy consumption, and increasingly on the reduction of pollutants and noise level. To this end, the engine’s design phases are subjected to improving processes continuously through experimental and numerical investigations. The present thesis is concerned with the simulation of transient and steady combustion regimes in an aircraft gas turbine operating under various combustion modes. Particular attention is paid to the accuracy of the results, the computational cost, and the ease of handling the numerical tool from an industrial standpoint. Thus, a commercial Computational Fluid Dynamics (CFD) code widely used in industry is selected as the numerical tool. A CFD methodology consisting of its advanced turbulence and combustion models, coupled with a subgrid spark-based ignition model, is formulated with the final goal of predicting the whole ignition sequence under cold start and altitude relight conditions, and the main flame trends in the steady combustion regime. At first, attention is focused on the steady combustion regime. Various CFD methodologies are formulated using three turbulence models, namely, the Unsteady Reynolds-Averaged Navier-Stokes (URANS), the Scale-Adaptive Simulation (SAS), and the Large Eddy Simulation (LES) models. To appraise the relevance of incorporating a realistic chemistry model and chemical non-equilibrium effects, two different assumptions are considered, namely, the infinitely-fast chemistry through the partial equilibrium model, and the finite-rate chemistry through the diffusion flamelet model. For each of the two assumptions, both one-component and two-component fuels are considered as surrogates for kerosene (Jet A-1). The resulting CFD models are applied to a swirl-stabilized combustion chamber to assess their ability to retrieve the spray flow and combustion properties in the steady combustion regime. Subsequently, the ratios between the accuracy of the results and the computational cost of the three CFD methodologies are explicitly compared. The second intermediate study is devoted to the ignition sequence preceding the steady combustion regime. A bluff-body stabilized burner based on gaseous fuel, and employing a spark-based igniter, is considered to calibrate the CFD model formulated. This burner of relatively simple geometry can provide greater understanding of complex reactive flow features, especially with regard to ignitability and stability. The most robust of the CFD methodologies formulated in the previous configuration is reconsidered. As this burner involves a partially-premixed combustion mode, a combustion model based on the mixture fraction-progress variable formulation is adopted with the assumptions of infinitely-fast chemistry and finite-rate chemistry through the Bray-Moss-Libby (BML) and Flamelet Generated Manifold (FGM) models, respectively. The ignition model is first customized by implementing the properties of the flame considered. Thereafter, the customized ignition model is coupled to the LES solver and combustion models based on the two above-listed assumptions. To assess the predictive capabilities of the resulting CFD methodologies, the latter are used to predict ignition events resulting from the spark deposition at various locations of the burner, and the results are quantitatively and qualitatively validated by comparing the latter to their experimental counterparts. Finally, the CFD methodology validated in the gaseous configuration is extended to spray combustion by first coupling the latter to the spray module, and by implementing the flame properties of kerosene in the ignition model. The resulting CFD model is first applied to the swirl-stabilized combustor investigated previously, with the aim of predicting the whole ignition sequence and improving the previous predictions of the combustion properties in the resulting steady regime. Subsequently, the CFD methodology is applied to a scaled can combustor with the aim of predicting ignition events under cold start and altitude relight operating conditions. The ability of the CFD methodology to predict ignition events under the two operating conditions is assessed by contrasting the numerical predictions to the corresponding experimental ignition envelopes. A qualitative validation of the ignition sequence is also done by comparing the numerical ignition sequence to the high-speed camera images of the corresponding ignition event.
|
3 |
Optimization and testing of a low NOx hydrogen fuelled gas turbineBorner, Sebastian 08 April 2013 (has links)
A lot of research effort is spent worldwide in order to reduce the environmental impact of the transportation and power generation sector. To minimize the environmental pollution the role of hydrogen fuelled gas turbines is intensively discussed in several research scenarios, like the IGCC-technology or the application of hydrogen as large scale storage for renewable energy sources. The adaptation of the applied gas turbine combustion chamber technology and control technology is mandatory for a stable and secure low NOx operation of a hydrogen fuelled gas turbine.<p>The micromix combustion principle was invented at Aachen University of Applied Sciences and achieves a significant reduction of the NOx-emissions by the application of multi miniaturized diffusion-type flamelets. Based on the research experiences, gained during the two European hydrogen research programs EQHHPP and Cryoplane at Aachen University of Applied Sciences, the intention of this thesis was to continue the scientific research work on low NOx hydrogen fuelled gas turbines. This included the experimental characterization of the micromix combustion principle, the design of an improved combustion chamber, based on the micromix combustion principle, for industrial gas turbine applications and the improvement of the gas turbine’s control and metering technology.<p>The experimental characterization of the micromix combustion principle investigated the impact of several key parameters, which influence the formation of the NOx-emissions, and allows therefore the definition of boundary conditions and design laws, in which a low NOx operation of the micromix combustion principle is practicable. In addition the ability of the micromix combustion principle to operate at elevated energy densities up to 15 MW/(m2bar) was successfully demonstrated. The improved combustion chamber design concept includes the experiences gained during the experimental characterization and covers the industrial needs regarding scalability and manufacturability.<p>The optimization and testing is done with an Auxiliary Power Unit GTCP 36-300. The original kerosene fuelled gas turbine was modified for the hydrogen application. Therefore several hardware and software modifications were realized. The improved gas turbine’s control and metering technology enables stable and comparable operational characteristics as in kerosene reference. An improved hydrogen metering unit, which is controlled by the industrial Versatile Engine Control Box, was successfully implemented. <p>The combination of the micromix combustion technology and of the optimized control and metering technology allows a stable, secure and low NOx hydrogen fuelled gas turbine operation.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
Page generated in 0.112 seconds