Spelling suggestions: "subject:"hydrogène (combustible)"" "subject:"hydrogène (combustibles)""
1 |
Novel strategies to design and construct efficient semiconductor-based photocatalyst for enhancing photocatalytic hydrogen evolution and nitrogen fixation under sunlight irradiationVu, Manh Hiep 27 January 2024 (has links)
L'énergie solaire est la source d'énergie la plus abondante au monde et elle peut être convertie en énergie chimique via des processus photocatalytiques. Au cours des dernières décennies, la photocatalyse sous la lumière du soleil est apparue comme une alternative innovante aux combustibles fossiles afin de résoudre et prévenir des problèmes graves liés à la crise environnementale et énergétique. Actuellement, les matériaux à base de semi-conducteurs (tels que TiO₂, C₃N₄, In₂O₃, WO₃) sont intensivement étudiés pour diverses applications photocatalytiques, y compris la réaction d’évolution d'hydrogène (HER) et la réduction de l'azote en ammoniac (NRR). Par conséquent, diverses approches telles que l'ingénierie structurelle, les hétérojonctions nanocomposites ont été étudiées afin de surmonter les problèmes de ces matériaux et ainsi augmenter l'activité catalytique. Dans le cadre de cette thèse, nous avons développé des nouvelles stratégies pour la synthèse des quatre types de photocatalyseurs efficaces pour la production d'hydrogène et la fixation de l'azote sous la lumière du soleil. Nos matériaux présentent une structure unique, qui favorise l'absorption de la lumière visible, la séparation des charges électrons-trous et l’augmentation du nombre de sites actifs.Pour l'application de la génération d'hydrogène photocatalytique, nous avons d'abord synthétisé les sphères de type éponge CdI₂nS₄ monophasées via une méthode solvothermique suivie d'un traitement au gaz contenant H₂S. La formation du complexe Cd/In avec une distribution uniforme de Cd²⁺ et In³⁺ a joué un rôle crucial dans la formation du spinelle monophasé CdIn₂S₄. L'énergie de la bande interdite s'est avérée être significativement réduite, ce qui permet une absorption étendue de la lumière visible jusqu'à 700 nm, ceci est principalement attribué à la dispersion d'espèce sulfure sur la bande de valence du CdIn₂S₄ monophasé. Avec le dépôt de Ni métallique comme cocatalyseur de réduction, le photocatalyseur hybride Ni-CdIn₂S₄ a montré une efficacité améliorée pour la production d'hydrogène sous la lumière solaire, ce qui représente une augmentation de l’activité d’environ, respectivement, 5,5 et 3,6 fois que celle des échantillons Pt-CdIn₂S₄ et Pd-CdIn₂S₄. Le deuxième système photocatalytique développé implique la préparation de nitrure de carbone graphitique dopé au S (Ni-SCN). Ce dernier est chimiquement ancré au nickel par une technique connue sous le nom de processus de photo-dépôt assisté par sulfuration. L'origine de la structure distinctive du Ni-SCN est dû à l'existence de liaisons chimiques NiS-C-N dans le système, ce qui favorisait la séparation des charges photogénérées et améliorait la capacité d’absorption lumineuse du photocatalyseur. Par conséquent, l’échantillon NiSCN synthétisé présente une excellente activité photocatalytique pour la production d'hydrogène sous la lumière du soleil. En effet, ce système présente une activité beaucoup plus élevée que celle des systèmes g-C₃N₄ dopés au S, Ni supporté g-C₃N₄ et Pt supporté g-C₃N₄ dopés au S. Pour une application photo (électro) catalytique de fixation de l'azote, nos travaux sont les premiers à rapporter la synthèse de nanoparticules d'Au chargées de nanoparticules W₁₈O₄₉ dopées au Fe (notées WOF-Au) par une synthèse solvothermique suivie d'un dépôt in situ des nanoparticules d'Au. L'incorporation de dopants Fe peut non seulement guérir les états de défaut de masse dans les réseaux non stœchiométriques W₁₈O₄₉, mais également favoriser la séparation et la migration interfaciale des électrons du photocatalyseur vers les molécules N₂ chimisorbées; tandis que les nanoparticules Au décorées sur la surface dopée au Fe W₁₈O₄₉ ont fourni les électrons à haute énergie pour la réduction de N₂ via l'effet de résonance plasmonique de surface localisé (LSPR). Le système WOF-Au plasmonique résultant montre un rendement amélioré pour la production de NH₃, beaucoup plus élevé que celui du W₁₈O₄₉ pur ainsi qu'une très grande stabilité. L'amélioration des performances photoélectrocatalytiques est principalement due à l'effet synergique des dopants Fe et des nanoparticules Au dans l'hôte W₁₈O₄₉. Enfin, les cacahuètes creuses de In₂O₃ dopées au Ru (dénotées Ru-In₂O₃ HPN) ont été fabriquées par la nouvelle stratégie d'auto-matrice suivie de la calcination des précurseurs synthétisés. Les nanoparticules uniformes In₂O₃ sont étroitement agglomérées ensemble pour former une structure de cacahuète creuse, ce qui facilite la séparation et le transport des l'électrons-trous photoexcités, améliorant l’absorption de la lumière par multi-réflexion. De plus, l'introduction des dopants Ru induit de nombreuses lacunes en oxygène à la surface et réduit l'énergie de la bande interdite du système photocatalytique. Ces lacunes d'oxygène agissent comme des centres de piégeage, facilitant la séparation des électrons trous photoexcités. Par conséquent, le taux de production d'ammoniac des Ru-In₂O₃ HPNs est 5,6 fois plus élevé que celui des In₂O₃ HPNs purs et largement supérieur au matériau en vrac d'In₂O₃, lorsqu’il est soumis à l’irradiation solaire. / Solar energy is the most abundant energy source in the world, and it can be converted into chemical energy via photocatalytic processes. Over the last decades, sunlight-driven photocatalysis has emerged as an innovative alternative to fossil fuels for solving the severe problems related to environmental diseases and the energy crisis. Currently, semiconductorbased materials (such as TiO₂, C₃N₄, In₂O₃, WO₃, BiVO₄) have been intensively studied for diverse photocatalytic applications, including the hydrogen evolution reaction (HER) and the nitrogen reduction reaction (NRR) to produce ammonia. However, the drawbacks of weak visible light absorption, low electron-hole separation with high recombination rate, and lack of surface active-sites have limited the photocatalytic performance of these semiconductorbased photocatalysts. Therefore, various approaches such as structural engineering, nanocomposite heterojunctions have been applied to overcome the limitations of these materials and boosting the catalytic activity. In this thesis, we employed novel strategies to develop four efficient photocatalytic systems for hydrogen production and nitrogen fixation. Our materials possessed a unique structure, which is advantageous to promote the visiblelight absorption, facilitate the separation of charge carrier, and increase the number of surface-active sites. For the photocatalytic hydrogen evolution application, we firstly synthesized the singlephase CdIn₂S₄ sponge-like spheres via solvothermal method followed by H₂S gas treatment. The formation of CdIn-complex with uniform distribution of Cd²⁺ and In³⁺ played a crucial role in achieving the spinel structured-single phase CdIn₂S₄. The bandgap energy was found to be significantly reduced, resulting in the extended visible light absorption up to 700 nm, which was primarily attributed to the sulfide species-mediated modification of the valence band in CdIn₂S₄ single-phase. With the deposition of Ni metal as a reduction cocatalyst, the hybrid Ni-CdIn₂S₄ photocatalyst showed enhanced solar light-driven photocatalytic hydrogen evolution efficiency, which is around 5.5 and 3.6 folds higher than that of Pt-CdIn₂S₄ and Pd-CdIn₂S₄ samples, respectively. The second developed photocatalytic system involved the preparation of chemically bonded nickel anchored S-doped graphitic-carbon nitride (Ni-SCN) through a technique known as sulfidation assisted photo-deposition process. The origin of the distinctive structure of Ni-SCN was due to the existence of Ni-S-C-N chemical bonds in the system, which fundamentally favored the separation of photogenerated electron-hole and improved the light-harvesting capabilities of the photocatalyst. Consequently, the synthesized Ni-SCN exhibited an excellent sunlight-driven photocatalytic activity toward hydrogen evolution, which was several times higher than Sdoped g-C₃N₄, Ni supported g-C₃N₄ and Pt loaded S-doped C₃N₄ systems. For photo(electro)catalytic nitrogen fixation application, our work is the first to report the synthesis of Au nanoparticles loaded Fe doped W₁₈O₄₉ (denoted as WOF-Au) nanorods through a solvothermal synthesis following by in situ deposition of Au nanoparticles. The incorporation of Fe dopants can not only heal the bulk-defect-states in nonstoichiometric W₁₈O₄₉ lattices but also promote the separation and interfacial migration of electrons from photocatalyst to chemisorbed N₂ molecules; while Au nanoparticles decorated on the Fe doped W₁₈O₄₉ surface provided the high energetic electrons for N₂ reduction via the localized surface plasmon resonance effect (LSPR). The obtained plasmonic WOF-Au system shows an enhanced NH₃ yield, which is much higher than that of the bare W₁₈O₄₉, as well as very high stability. The enhancement in photoelectrocatalytic performance is mainly contributed by the synergetic effect of Fe dopants and plasmonic Au nanoparticles on the W₁₈O₄₉ host. Lastly, Ru doped In₂O₃ hollow peanuts (demoted as Ru-In₂O₃ HPNs) were fabricated by the novel self-template strategy followed by the calcination of the as-synthesis precursors. The uniform In₂O₃ nanoparticles were closely packed together to form a hollow peanut structure, which facilitated the separation and transportation of photoinduced electron-hole and favored the light-harvesting ability by the internal multi-reflection process. Furthermore, the introduction of Ru dopants induced numerous surface oxygen vacancies and narrow down the bandgap energy of the photocatalytic system. These oxygen vacancies act as trapping centers, facilitating the separation of photoexcited electrons and holes. Consequently, the ammonia production rate of Ru-In₂O₃ HPNs was 5.6 times and much higher as compared to pure In₂O₃ HPNs and bulk material of In₂O₃ under solar light irradiation.
|
2 |
Design of a shock-Induced Combustion experiment in an axisymmetric configuration with hydrogen injectionVerreault, Jimmy 12 April 2018 (has links)
Ce travail présente la conception d'une expérience de combustion induite par choc. Ce type de combustion est utilisé pour la propulsion des avions voyageant plus rapidement que Mach 5, qui est le sujet de cet étude, mais survient également, par exemple, dans le lancement de projectile à haute vitesse (accélérateur dynamique). Une configuration conique à deux angles a été utilisée et quatre géométries d'injection ont été considérées: une surface conique, une configuration à double étage avec espacement rectangulaire, une rampe cylindrique et une rampe en forme de double coin. Les conditions du carburant et de l'écoulement libre ont aussi été modifiées. Quatre paramètres ont été étudiés: la hauteur de pénétration du carburant, le rendement de mélange, le contrôle de l'allumage prématuré et l'interaction entre l'onde de choc et la couche limite. Les simulations numériques ont été exécutées avec le code FLUENT®. Les équations Navier-Stokes tridimensionnelles moyennées par Favre ont été résolues en utilisant le modèle de turbulence SST k — u> développé par Menter. L'oxydation de l'hydrogène a été modelée par le mécanisme de réaction Jachimowski, qui inclut 9 espèces et 20 réactions. Une relation a été dérivée afin de prédire la hauteur de pénétration du carburant à la fin de la région de mélange. De l'étude de mélange, la rampe cylindrique a généré le meilleur champ d'écoulement pour accomplir la combustion induite par choc, puisqu'elle a procuré le meilleur rendement de mélange, elle a prévenu l'allumage prématuré et elle a dispersé le carburant loin de la surface. La partie réactive a révélé que la combustion du mélange a pu être initiée par la deuxième onde de choc, et que la zone subsonique dans la région de combustion a réduit la longueur d'induction. / This work presents a design for a shock-induced combustion experiment. This type of combustion occurs in aircraft engines flying faster than Mach 5, which is the topic of this study, but also occurs, for example, in high-speed projectile launching (ram accelerators). A two-angle cone configuration was used and four injector geometries were considered: a conical surface, a dual-stage configuration with rectangular gaps, a cylindrical ramp and a double-wedge ramp. The fuel as well as the freestream conditions were also varied. Four parameters were investigated: the fuel penetration height, the mixing efficiency, the control of premature ignition and the shock wave / boundary layer interaction. The numerical calculations were performed with the FLUENT® code. The three-dimensional Favre-averaged Navier-Stokes equations were solved employing the Menter SST k — u turbulence model. The hydrogen/oxygen combustion was modelled with a 9 species and 20 reactions Jachimowski reaction mechanism. A relation was derived to predict the fuel penetration height at the end of the mixing region. From the mixing study, the cylindrical ramp injector gave the best flowfield for shock-induced combustion since it provided the best mixing efficiency, prevented premature ignition and dispersed the fuel far from the wall. The combustion modelling revealed that combustion can be initiated by the second shock wave, and that the subsonic zone in the combustion region reduced the induction length.
|
3 |
Synthèse et caractérisation d'un photocatalyseur hétérogène à base de phosphore noir assisté par Ni₂P comme un co-catalyseur pour la génération d'hydrogène à partir de l'eauChouat, Anis 19 September 2022 (has links)
L'exploitation de l'énergie solaire présente une solution alternative efficace pour limiter la consommation de l'énergie fossile et résoudre ainsi les problèmes qui en découlent notamment la pollution et le changement climatique. La dissociation de l'eau par le procédé de la photocatalyse est considérée actuellement comme une méthode innovante pour la photogénération de l'hydrogène (H₂) à partir d'une ressource non carbonée. Les photocatalyseurs classiques mis en jeu ne sont malheureusement activables que sous l'irradiation de l'ultraviolet, ce qui limite leur activité catalytique sous la lumière solaire principalement formée par le visible. Grâce à ses propriétés optiques et électroniques, le phosphore noir (BP) est caractérisé par une bonne absorption lumineuse étendue sur le visible, et même l'infrarouge proche. Ainsi, il présente un candidat potentiel pour les procédés photocatalytiques. Ce travail présente une méthode alternative pour la synthèse d'un nanocomposite à base du BP assisté par le phosphure de nickel (Ni₂P). Cette méthode est basée sur la transition de phase induite par l'éthylènediamine en présence des ions nickel (Ni²⁺) pour la formation in-situ du Ni₂P en tant que co-catalyseur à la surface du BP formé. Les résultats obtenus montrent que l'activité photocatalytique du nanocomposite avec un ratio molaire Ni/P de 3 % atteint 406,08 μmol.g⁻¹.h⁻¹, qui est 185 fois plus élevé que le matériau sans co-catalyseur. Le plus important, le photocatalyseur a montré une efficacité quantique élevée allant jusqu'à 48,45 % à 360 nm et 7,90 % à 400 nm. La caractérisation du matériau synthétisé a prouvé que cette performance photocatalytique pourrait être expliquée par l'absorption lumineuse étalée sur le visible ainsi que l'efficacité de la séparation des porteurs de charges assurée par un contact intime entre le co-catalyseur et le matériau principal. Ce contact établi par une liaison covalente permet également d'avoir une stabilité notable. La stabilité du nanocomposite développé s'est manifestée par une capacité importante de réutilisabilité, ce qui lui permettrait d'être un photocatalyseur performant pour une application pratique. / The exploitation of solar energy presents an effective and an alternative solution to limit the consumption of fossil energy and to solve the correspondent problems, particularly the pollution and the climate change. The water splitting using the photocatalysis process is considered currently as an innovative method for the photogeneration of hydrogen (H₂) from a non-carbon resource. The involved conventional photocatalysts are unfortunately activable only under ultraviolet irradiation, which limits their catalytic activity under sunlight, mainly composed of the visible spectrum. Thanks to its optical and electronic properties, black phosphorus (BP) is characterized by a good light absorption including the visible and even the near-infrared spectrum. Thus, it presents a potential candidate for photocatalytic processes. This work presents an alternative method for the synthesis of a BP-based nanocomposite assisted by nickel phosphide (Ni₂P). This method is based on the ethylenediamine-induced phase transition in the presence of nickel ions (Ni²⁺) for the in-situ growth of Ni₂P as a co-catalyst on the surface of the as-synthesized BP. The obtained results show that the photocatalytic activity of the nanocomposite with Ni/P molar ratio of 3% reached 406.08 μmol.g⁻¹.h⁻¹, which is 185 times higher than the bare material. Most importantly, the photocatalyst showed a high quantum efficiency of up to 48.45% at 360 nm and 7.90% at 400 nm. The characterization of the synthesized material proved that this photocatalytic performance could be explained by the light harvesting efficiency including the visible light as well as the charge carrier separation efficiency ensured by the intimate contact between the co-catalyst and the main material. Also, this contact established by a chemical covalent bond provides a notable stability. The stability of the developed nanocomposite is manifested by a significant capacity for reusability, which would allow it to be a powerful photocatalyst in a practical application.
|
4 |
Synthèse et caractérisation d'un photocatalyseur hétérogène à base de phosphore noir assisté par Ni₂P comme un co-catalyseur pour la génération d'hydrogène à partir de l'eauChouat, Anis 13 December 2023 (has links)
L'exploitation de l'énergie solaire présente une solution alternative efficace pour limiter la consommation de l'énergie fossile et résoudre ainsi les problèmes qui en découlent notamment la pollution et le changement climatique. La dissociation de l'eau par le procédé de la photocatalyse est considérée actuellement comme une méthode innovante pour la photogénération de l'hydrogène (H₂) à partir d'une ressource non carbonée. Les photocatalyseurs classiques mis en jeu ne sont malheureusement activables que sous l'irradiation de l'ultraviolet, ce qui limite leur activité catalytique sous la lumière solaire principalement formée par le visible. Grâce à ses propriétés optiques et électroniques, le phosphore noir (BP) est caractérisé par une bonne absorption lumineuse étendue sur le visible, et même l'infrarouge proche. Ainsi, il présente un candidat potentiel pour les procédés photocatalytiques. Ce travail présente une méthode alternative pour la synthèse d'un nanocomposite à base du BP assisté par le phosphure de nickel (Ni₂P). Cette méthode est basée sur la transition de phase induite par l'éthylènediamine en présence des ions nickel (Ni²⁺) pour la formation in-situ du Ni₂P en tant que co-catalyseur à la surface du BP formé. Les résultats obtenus montrent que l'activité photocatalytique du nanocomposite avec un ratio molaire Ni/P de 3 % atteint 406,08 μmol.g⁻¹.h⁻¹, qui est 185 fois plus élevé que le matériau sans co-catalyseur. Le plus important, le photocatalyseur a montré une efficacité quantique élevée allant jusqu'à 48,45 % à 360 nm et 7,90 % à 400 nm. La caractérisation du matériau synthétisé a prouvé que cette performance photocatalytique pourrait être expliquée par l'absorption lumineuse étalée sur le visible ainsi que l'efficacité de la séparation des porteurs de charges assurée par un contact intime entre le co-catalyseur et le matériau principal. Ce contact établi par une liaison covalente permet également d'avoir une stabilité notable. La stabilité du nanocomposite développé s'est manifestée par une capacité importante de réutilisabilité, ce qui lui permettrait d'être un photocatalyseur performant pour une application pratique. / The exploitation of solar energy presents an effective and an alternative solution to limit the consumption of fossil energy and to solve the correspondent problems, particularly the pollution and the climate change. The water splitting using the photocatalysis process is considered currently as an innovative method for the photogeneration of hydrogen (H₂) from a non-carbon resource. The involved conventional photocatalysts are unfortunately activable only under ultraviolet irradiation, which limits their catalytic activity under sunlight, mainly composed of the visible spectrum. Thanks to its optical and electronic properties, black phosphorus (BP) is characterized by a good light absorption including the visible and even the near-infrared spectrum. Thus, it presents a potential candidate for photocatalytic processes. This work presents an alternative method for the synthesis of a BP-based nanocomposite assisted by nickel phosphide (Ni₂P). This method is based on the ethylenediamine-induced phase transition in the presence of nickel ions (Ni²⁺) for the in-situ growth of Ni₂P as a co-catalyst on the surface of the as-synthesized BP. The obtained results show that the photocatalytic activity of the nanocomposite with Ni/P molar ratio of 3% reached 406.08 μmol.g⁻¹.h⁻¹, which is 185 times higher than the bare material. Most importantly, the photocatalyst showed a high quantum efficiency of up to 48.45% at 360 nm and 7.90% at 400 nm. The characterization of the synthesized material proved that this photocatalytic performance could be explained by the light harvesting efficiency including the visible light as well as the charge carrier separation efficiency ensured by the intimate contact between the co-catalyst and the main material. Also, this contact established by a chemical covalent bond provides a notable stability. The stability of the developed nanocomposite is manifested by a significant capacity for reusability, which would allow it to be a powerful photocatalyst in a practical application.
|
5 |
Sustainable hydrogen production via glycerol steam reforming with and without in-situ CO2 removal : materials development and applicationShokrollahi Yancheshmeh, Marziehossadat 15 April 2024 (has links)
Au cours des dernières décennies, l'hydrogène a beaucoup attiré l'attention en tant que vecteur d'énergie verte. Actuellement, plus de 95% d'hydrogène est produit à partir de combustibles fossiles, ce qui a été remis en question par l'épuisement des ressources et l'augmentation des émissions de gaz à effet de serre. Par conséquent, les ressources renouvelables neutres en carbone telles que la biomasse et les produits chimiques dérivés de la biomasse suscitent un intérêt croissant comme alternative pour la production d'hydrogène. En tant que sous-produit principal du processus de fabrication du biodiesel, le glycérol est devenu une source prometteuse de production d’hydrogène. Bien que le reformage à la vapeur («steam reforming», SR) soit reconnu comme une approche prometteuse pour convertir le glycérol en hydrogène, le procédé est confronté à un certain nombre de défis, notamment la présence de réactions limitées par l’équilibre chimique et la nécessité d'un système couteux de purification en aval. Pour remédier ces problèmes, une solution prometteuse est l’application du procédé de reformage à la vapeur couplé à la sorption spécifique in-situ (« sorption enhanced steam reforming», SESR), dans lequel les réactions de reformage, la réaction du gaz à l’eau («water gas shift», WGS) et la capture du CO2 se produisent simultanément en utilisant un catalyseur de reformage et un sorbant solide pour le CO2. Dans ce procédé, l'élimination du CO2 se produit simultanément à la réaction de reformage, décalant la réaction du WGS vers la production d'hydrogène et produisant un flux de gaz enrichi en hydrogène en une seule étape. Les facteurs clés du succès de cette technologie sont principalement (i) les catalyseurs de reformage et les sorbants de CO2 pouvant fonctionner efficacement dans les conditions difficiles du procédé SESR et (ii) le moyen d’associer le catalyseur au matériau sorbant. Cette thèse porte sur le développement de catalyseurs et de matériaux bifonctionnels catalyseur-sorbant efficaces pour la production durable d'hydrogène par le SR et le SESR duglycérol (SRG et SESRG). Plus spécifiquement, ce travail fait l’objet de quatre directions principales: (i) l’étude de l’effet de l’addition de vapeur pendant la carbonatation ou la calcination sur les performances du sorbant Ca9Al6O18-CaO lors de la capture du CO2, (ii) le développement des matériaux bifonctionnels Ca9Al6O18−CaO/xNiO (x = 15, 20et 25% en poids) et Ca9Al6O18−CaO/20NiO−yCeO2 (y = 5, 10 et 15% en poids) et l’étude de l’effet du CeO2 sur la stabilité des matériaux en fonctionnement cyclique SESRG/régénération, (iii) le développement d’une nouvelle méthode de synthèse duspinelle NiAl2O4 plus facilement réductible et l’étude de l'effet de l'addition de CeO2 sur ses performances catalytiques, et (iv) le développement d’une nouvelle méthode de synthèse de deux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour obtenir une distribution très uniforme des sites actifs catalytiques. (i) Les performances du sorbant Ca9Al6O18-CaO pour la capture du CO2 ont été étudiées en présence de 2.3 et 9.5% en volume de vapeur. Les résultats obtenus ont révélé que la réactivité du sorbant était remarquablement améliorée pour les deux concentrations de vapeur injectée lors de l'étape de carbonatation. Dans le cas de l'addition de vapeur pendant la calcination, la performance de la capture a été influencée négativement ou positivement en fonction de la concentration de vapeur: pour 2.3%, la réactivité du sorbant a été diminuée, tandis que la présence de 9.5% a entraîné une augmentation de la capacité de capture pendant les 9 premiers cycles. (ii) Deux séries de matériaux bifonctionnels catalyseur-sorbantont été développées pour la production d’hydrogène de haute pureté par SESRG. L'utilisation des matériaux Ca9Al6O18-CaO/xNiO (x = 15, 20 et 25% en poids) pendant cinq cycles SESRG/régénération a révélé que leur réactivité diminuait rapidement, principalement à cause du frittage duCaO et du dépôt de coke. De ce fait, la période de pre-breakthroughet le rendement en hydrogène ont diminué de façon notable pendant l’opération cyclique. Il est intéressant de noter que l’ajout de CeO2 au matériau le plus efficace (Ca9Al6O18−CaO/20NiO) a permis d’améliorer considérablement sa stabilité. Le matériau bifonctionnel activé avec 10% (en poids) de CeO2 a démontré les meilleures performances: pureté et rendement en H2de 98% et 91%, respectivement, pendant 20 cycles SESRG/régénération. (iii) Une nouvelle méthode impliquant la calcination en une ou deux étapes d'un alcoolate de métal mixte Ni-Al(«Ni-Al mixed-metal alkoxide», (Ni-Al)-Glycerate) a été développée pour la synthèse de spinelle de NiAl2O4. À des fins de comparaison, le spinelle de NiAl2O4 a également été synthétisépar la méthode classique de co-précipitation suivie de la technique de calcination en deux étapes. Les résultats de la caractérisation des matériaux ont révélé que la synthèse de spinelle de NiAl2O4 parla calcination de (Ni-Al)-Glycérateen deux étapesa conduit à la formation d'un catalyseur plus facilement réductible et d'une structure poreuse plus développée. Cet échantillon représentait le rendement en H2le plus élevé (76.38%) et la conversion du glycérolen produits gazeux (95.42%) par rapport aux autres échantillons. Afin de réduire ou éviter la formation de coke, CeO2 (10% en poids) a été incorporé dans l’échantillon préparé parla calcination de (Ni-Al)-Glycérateen deux étapes. L'analyse thermogravimétrique du catalyseur promu par CeO2 après la réaction de reformage a révélé que la formation de coke était presque complètement supprimée. (iv) La méthode développée pour la synthèse despinelle de NiAl2O4 dans les travaux précédents a été combinée autraitement du sorbant à base de CaO avec une solution d’éthanol/eau afin de synthétiser deux nouveaux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour la production d'hydrogène via SESRG. Les expériences effectuées en opération cycliques SESRG/régénération ont montré une activité et une stabilité supérieures pour le matériau bifonctionnel Ca3Al2O6-CaO/NiO-CeO2 (pureté de l’H2 d’environ 96% pendant 10 cycles), par rapport à NiAl2O4-CaO/NiAl2O4-CeO2 (pureté de l’H2 d’environ 90% pendantles 6 premiers cycles, diminuant à 86% au cours des 4 derniers cycles). En conclusion, les résultats présentés dans cette thèse montrent que le SESRG peut être une approche très prometteuse pour la production d’hydrogène de haute pureté en une seule étape, à condition que les matériaux bifonctionnels catalyseur-sorbantutilisés possèdent une distribution uniforme des sites actifs catalytiques et à sorption à l’échelle nanométrique et une résistance élevée au frittage de CaO et formation de coke. Pour préparer des matériaux bifonctionnels catalyseur-sorbant présentant ces caractéristiques, deux approches principales ont été utilisées dans ce travail: (i) le développement de nouvelles méthodes de synthèse permettant une distribution homogène des éléments ciblés (Ca, Ni, Alet Ce dans cette étude) et (ii) l'utilisation de CeO2 comme promoteur prometteur pour réduire ou supprimer la formation de coke et améliorer la stabilité cyclique des particules de CaO. / Over the past few decades, hydrogen has attracted a great deal of attention as a green energy carrier. Currently, more than 95 % of hydrogen is produced from fossil fuels, which has been questioned by the depletion of resources andincrease of greenhouse gas emissions. Therefore, renewable, carbon-neutral resources such as biomass and biomass-derived chemicals has been receiving a growing interest as an option to produce hydrogen. As a main by product in the biodiesel manufacturing process, glycerol has emerged as a promising source for hydrogen production. Although steam reforming (SR) is being recognized as a promising approach for converting glycerol to hydrogen, this process faces a number of challenges including the presence of equilibrium-limited reactions and the need of an expensive downstream purification system. To alleviate these problems, a promising alternative is sorption enhanced steam reforming (SESR) process, in which steam reforming, water gas shift (WGS), and CO2 capture reactions occur simultaneously using areforming catalyst and a CO2solid sorbent. In this process, CO2 removal occurs simultaneously with the reforming reaction, shifting the WGS reaction towards hydrogen production and producing a hydrogen-enriched gas stream in a single step. The key factors in the successful application of this technology are mainly: (i) reforming catalysts and CO2 sorbents that can work efficiently under the harsh conditions of SESR process and (ii) mixing pattern of catalyst and sorbent. This thesis focuses on the development of efficient catalyst and catalyst-sorbent bifunctional materials for sustainable hydrogen production by SR and SESR of glycerol (SRG and SESRG). More specifically, four main objectives of our workare: (i) investigating the influence of steam addition during either carbonation or calcination on the CO2 capture performance of Ca9Al6O18-CaO sorbent, (ii) developing Ca9Al6O18−CaO/xNiO (x = 15, 20, and 25 wt.%) and Ca9Al6O18−CaO/20NiO−yCeO2(y = 5, 10, and 15 wt %) catalyst-sorbent bifunctional materials and studying the influence of CeO2 on the material stability incyclic SESRG/regeneration operation, (iii) proposing a new method for the synthesis of a more readily reducible NiAl2O4 spinel and studying the influence of CeO2 addition on its catalytic performance, and (iv) novel synthesis of two Ni-CaO-based catalyst-sorbent bifunctional materials with highlyuniform distribution of catalytic active sites. (i) CO2 capture performance of Ca9Al6O18-CaO sorbent was investigated in the presence of two concentrations of steam, 2.3 and 9.5 vol. %.The obtained results revealed that the sorbent reactivity was remarkably enhanced for both concentrations of steam injected during carbonation step. In the case of steam addition during calcination, the CO2 capture performance was influenced negatively or positively depending on the concentration of steam. For 2.3 vol.% steam, the sorbent reactivity was worsened, while the presence of 9.5 vol.% steam led to an increase in the CO2capture capacity during 9 initial cycles.(ii) Two series of catalyst-sorbent bifunctional materials were developed for the sustainable production of high-purity hydrogen by SESRG. Using Ca9Al6O18−CaO/xNiO (x = 15,20, and 25 wt.%) materials during five SESRG/regeneration cycles revealed that their reactivity was rapidly deteriorated mainly due to CaO sintering and coke deposition. As a result, the pre-breakthrough time and hydrogen yield decreased notably over five cycles. Interestingly, the addition of CeO2 to the most efficient catalyst (Ca9Al6O18−CaO/20NiO) led to a significant enhancement in material stability during cyclic operation. The bifunctional material promoted with 10 wt.% of CeO2 demonstrated the best performance, with a stable H2purity of ∼98% and H2yield of ∼91% over 20SESRG/regeneration cycles. (iii) A novel method, involving one-or two-step calcination of Ni-Al mixed-metal alkoxide((Ni-Al)-Glycerate), was developed for the synthesis of NiAl2O4 spinel. For comparison purposes, the NiAl2O4 spinel was also synthesized throughthe conventional co-precipitation method followed by two-step calcination technique. The characterization results revealed that the synthesis of NiAl2O4 spinel through two-step calcination of (Ni-Al)-Glycerateresulted in the formation of a more easily reducible catalyst and a more developed porous structure. This sample showed the highest H2yield (76.38 %) and glycerol conversion into gaseous products (95.42 %) when compared to other two samples. In order to avoid or reduce coke formation, 10 wt.% of CeO2 was incorporated into the sample prepared by two-step calcination of (Ni-Al)-Glycerate. The thermogravimetric analysis of the CeO2-promoted catalyst after SRG reaction revealed that the coke formation was almost completely suppressed. The method developed for the synthesis of NiAl2O4 spinel in the previous work was combined with the ethanol/water treatment of CaO-based sorbents to synthesistwo new NiCaO-based catalyst-sorbent bifunctional materials for hydrogen production via SESRG. Cyclic SESRG/regeneration experiments showed that the Ca3Al2O6-CaO/NiO-CeO2 bifunctional material possessed higher activity and stability when compared to NiAl2O4-CaO/NiAl2O4-CeO2. The former one exhibited a high constant H2 purity of around 96% over 10 cycles, while the latter showed a H2 purity of approximately 90% over the first 6 cycles, followed by the further decrease to 86 % over the last 4 cycles. In conclusion, the results presented in this thesis show that SESRG can be a very promising approach for high-purity hydrogen production in a single step, providing that the employed catalyst-sorbent bifunctional materials possess uniform distribution of catalytic and sorption active sites on nanoscale and high resistance against CaO sintering and coke formation. To prepare catalyst-sorbent bifunctional materials with these characteristics, two main approaches were employed in this work: (i) developing new synthesis methods that provide a homogeneous distribution of targeted elements (Ca, Ni, Al, and Ce in this study) and (ii) using CeO2 as a promising promoter to reduce or suppress coke formation and enhance the cyclic stability of CaO particles.
|
6 |
Sustainable hydrogen production by glycerol steam reforming over metallurgical waste-driven catalysts / Production durable d'hydrogène par reformage à la vapeur de glycérol sur catalyseurs à base d'un déchet métallurgiqueAli Zadeh Sahraei, Ommolbanin 12 November 2023 (has links)
Les crises liées à la dégradation de l'environnement et à la diminution des ressources naturelles renforcent la nécessité de prolonger la durée de vie de tout matériau résiduel ou sous-produit indésirable dans les systèmes de production et de consommation. Dans ce contexte, l'idée de développer de nouveaux catalyseurs en utilisant des déchets solides industriels est un sujet émergent, qui s'inscrit bien dans le concept de développement durable. D'autre part, en raison des progrès rapides de la technologie, de l'industrie et de l'information, l'offre en énergie sera difficilement capable de répondre à la demande mondiale croissante. L'importance de fournir cette énergie de manière durable afin de rencontrer les objectifs des efforts mondiaux de lutte contre les changements climatiques a renforcé l'intérêt pour le développement de biocarburants hydrocarbonés renouvelables tels que le biodiesel. Au cours des dernières décennies, avec la croissance de la production de biodiesel, le monde a été confronté à un excédent de glycérol comme sous-produit résiduel provenant du processus de production commun de transestérification. Afin de réduire l'impact environnemental négatif de cet excédent de glycérol et d'accroître la rentabilité de l'industrie du biodiesel, ce déchet devrait être impliqué dans une économie circulaire environnementale et durable. De récentes recherches ont démontré qu'il existe un grand potentiel pour l'utilisation du glycérol résiduel du biodiesel dans le secteur des énergies renouvelables. Il est possible d'y parvenir par divers procédés, notamment la gazéification, la pyrolyse, la combustion, la liquéfaction et le reformage à la vapeur. Parmi ceux-ci, le reformage à la vapeur est considéré comme l'une des méthodes les plus prometteuses pour convertir le glycérol en hydrogène (en tant que vecteur d'énergie verte et matière première essentielle dans les raffineries et les industries chimiques), car sa mise à l'échelle industrielle ne nécessiterait pas de modifications importantes des infrastructures de reformage du gaz naturel existantes. Compte tenu de l'importance de ces enjeux, cette thèse se penche sur le développement de nouveaux catalyseurs par la valorisation d'un résidu solide métallurgique (UGSO) pour la production d'hydrogène (syngas) via le reformage à la vapeur de glycérol (GSR). Plus précisément, les trois principaux objectifs de cette étude sont les suivants: (i) l'étude du potentiel de l'UGSO comme support/promoteur pour catalyseurs à base de Ni (Ni-UGSO), (ii) l'analyse approfondie de l'effet des paramètres de synthèse du catalyseur (charge de métal actif et méthode de préparation) sur les propriétés physico-chimiques et la performance du catalyseur, ainsi que l'étude de l'effet de la température de réaction en examinant le rôle des principales réactions secondaires dans le réseau réactionnel du procédé reformage (y compris les réactions de water-gas shift (WGS), de Boudouard, de méthanisation du CO et du CO₂, et la réaction inverse de WGS), et (iii) la comparaison des caractéristiques structurelles et de la performance catalytique du Ni-UGSO avec celles des catalyseurs à base de métaux nobles(Ru-UGSO et Rh-UGSO) reconnus comme hautement efficaces dans les procédés de reformage à la vapeur. (i) Le catalyseur préparé par l'incorporation de 12,5 % massique de Ni dans l'UGSO a été évalué pour l'application dans le procédé de GSR dans des conditions opératoires spécifiques suggérées comme optimales par l'analyse thermodynamique (T=580 °C, P=1 bar, et S/C=3). En comparant avec un catalyseur commercial de reformage à la vapeur à base de Ni, les résultats furent prometteurs, notamment en termes de formation de coke. Les principales propriétés intéressantes du catalyseur Ni-UGSO ont été suggérées comme étant : (i) la dispersion et l'ancrage des particules de Ni par la formation d'oxydes mixtes nickel-fer ainsi que nickel-magnésium, (ii) l'absence de phases métalliques libres par la formation d'alliages Ni-Fe après un prétraitement de réduction, et (iii) le caractère basique de l'UGSO dû à la présence d'oxydes tels que MgO, CaO, K₂O et MnO, qui pourrait favoriser l'adsorption dissociative de l'eau et la réaction de WGS. Ces résultats ont prouvé la capacité de l'UGSO promu par le Ni à agir comme un puissant catalyseur dans le procédé de GSR. (ii) Les résultats d'une étude détaillée sur les effets des paramètres de synthèse sur la performance du catalyseur Ni-UGSO ont révélé que la meilleure performance catalytique GSR a été obtenue en incorporant 5 % massique de Ni par la méthode d'imprégnation à l'état solide (SSI-5%Ni-UGSO), où des oxydes mixtes nickel-fer avec un rapport Ni/Fe optimal (comme NiFe₂O₄) et des oxydes mixtes nickel-magnésium riches en Mg (comme 3MgO.NiO) ont été formés. La performance supérieure du catalyseur SSI-5%Ni-UGSO optimisé est principalement due à (i) l'effet synergique entre le Ni et les espèces d'oxyde de fer partiellement réduites sur les sites actifs Ni-Fe[indice x]O[indice y] (plutôt que les alliages métalliques Ni et/ou NiFe) où le glycérol est activé sur les espèces Ni et les atomes d'oxygène sont fournis à l'intermédiaire carboné à partir du Fe[indice x]O[indice y] voisin, et (ii) aux propriétés fondamentales du MgO en contact étroit avec le Ni, qui favorise la dissociation de l'eau en groupes hydroxyle et aide à gazéifier les précurseurs de coke déposés sur la surface du catalyseur. Pour des températures supérieures à 580 °C, des conversions presque complètes du glycérol en produits gazeux ont été obtenues avec le catalyseur SSI-5%Ni-UGSO dans les conditions opératoires choisies (S/C=3, FI=1.1, GHSV=10,966 cm³ (STP) gcat⁻¹ h⁻¹). Un rendement en H₂ plus élevé (80.7 %) et une très faible formation de coke (0.59 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) sont des avantages de l'opération à 580 °C en favorisant la réaction WGS, tandis que l'augmentation de la température à 730 °C permet de supprimer presque entièrement la formation de coke (0.18 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) principalement en limitant la réaction de Boudouard, avec l'inconvénient d'un rendement en hydrogène plus faible (59.4 %). (iii) Les résultats d'une étude exhaustive sur la performance des catalyseurs UGSO promus au M (M= 1%Ru, 1%Rh, 5%Ni) ont révélé que la tendance du métal incorporé à interagir avec les oxydes contenant du Mg/Fe déjà existants dans l'UGSO joue un rôle crucial (i) dans la disponibilité de surface du métal correspondant, (ii) les changements structurels après réduction et (iii) la stabilité du catalyseur. En plus d'offrir une meilleure stabilité, le catalyseur 5% Ni-UGSO a montré une performance (conversion du glycérol en produits gazeux de 100% et rendement en H₂ de 74%) comparable à celle de 1% Rh-UGSO (100% et 78%, respectivement) ou même dépassant celle de 1% Ru-UGSO (94% et 71%, respectivement), en tant que catalyseurs à base de métaux nobles. Une coopération synergique entre les métaux incorporés (M) et les espèces contenant du Fe/Mg au sein de l'UGSO a permis d'améliorer l'activation du glycérol et de l'eau. Les résultats plus faibles observés pour Ru-UGSO pourraient s'expliquer par un manque de propension à l'interaction MgO-RuO₂ sur la surface de l'UGSO. Compte tenu du prix nettement inférieur du Ni par rapport au Rh (1/5526 du prix moyen du Rh en 2018), un rendement en hydrogène légèrement supérieur (78 contre 74 %) et une différence insignifiante dans la formation de coke (0 contre 0,01 g[indice coke] h⁻¹ gcat⁻¹) ne justifient pas économiquement l'utilisation du catalyseur 1 % Rh-UGSO à la place de 5 % Ni-UGSO. En conclusion, les résultats présentés dans cette thèse prouvent la capacité de l'UGSO comme support/promoteur prometteur dans la formulation de catalyseurs actifs, sélectifs, stables et rentables pour la production d'hydrogène via le procédé de GSR, spécialement en raison de(i) la présence d'oxydes (principalement des oxydes de magnésium et de fer) reconnus pour leur capacité à éviter la formation de carbone (la principale cause de désactivation du catalyseur dans le reformage à la vapeur des hydrocarbures oxygénés) et (ii) sa structure cristalline de type spinelle avec des cations métalliques échangeables distribués de manière homogène, qui peut fournir une bonne matrice pour la dispersion de métaux actifs conduisant à une coopération synergique entre les particules de métaux actifs incorporées (en particulier le Ni, très accessible et bon marché) et les autres constituants déjà présents dans l'UGSO. De telles approches, dans lesquelles les déchets industriels issus de divers procédés sont utilisés ensemble pour des applications environnementales, sont non seulement cohérentes avec les concepts d'écologie industrielle et de développement durable, mais sont également classées comme le niveau le plus sophistiqué de valorisation des déchets. / The crises related to the environmental degradation and shrinking natural resources reinforces the necessity of extending the life of any residual material or unwanted by-product in the production and consumption systems. In this context, the idea of developing new catalysts using industrial solid wastes is an emerging topic, which aligns well with the concept of sustainable development. On the other hand, due to the rapid technological, industrial, and informational advancements, the energy supply will not be able to keep up with the growing demand. The importance of supplying this energy in a sustainable manner in order to meet the goals of global efforts to combat climate change has heightened interest in the development of renewable hydrocarbon biofuels such as biodiesel. Over the last few decades, with the growth in biodiesel production, the world has faced a surplus of glycerol as a waste by-product of its common production process through transesterification. To reduce the negative environmental impact of this excess glycerol and to make the biodiesel industry profitable, this waste should contribute to a sustainable environmental circular economy. Recent research has indicated that there is a great potential for the use of biodiesel waste glycerol in the renewable energy sector. This can be achieved through a variety of processes including gasification, pyrolysis, combustion, liquefaction, and steam reforming. Among them, catalytic steam reforming is considered as one of the most promising methods for converting glycerol into hydrogen (as a green energy carrier and a critical feedstock in refineries and chemical industries), since its industrial scale-up would not necessitate significant changes to existing natural gas reforming infrastructure. Given the importance of these issues, this thesis focuses on the development of new catalysts through valorization of a metallurgical solid residue (UGSO) for hydrogen (syngas) production via steam reforming of biodiesel waste glycerol (GSR). More specifically, the three main objectives of our work include:(i) investigating the potential of UGSO as a support/promoter for Ni-based catalysts, (ii) performing a thorough investigation on the effect of catalyst synthesis parameters (active metal loading and catalyst preparation method) on both physicochemical properties and catalyst performance, as well as studying the effect of operating temperature by examining the role of the main side reactions in the reaction network (including water gas shift (WGS), Boudouard, CO and CO₂ methanation, and reverse WGS reactions), and finally (iii) comparing the structural characteristic and catalytic performance of the optimized Ni-UGSO with noble metal based catalysts (Ru-UGSO and Rh-UGSO) with well-known high efficiency for steam reforming process. (i) The catalyst prepared by the incorporation of 12.5 wt % Ni into UGSO was evaluated for application in GSR process at specific operating conditions suggested as optimum by thermodynamic analysis (T=580 °C, P=1 bar, and S/C=3). By comparing with a Ni-based commercial steam reforming catalyst, the results were very promising especially in terms of coke formation. The main reasons for the interesting properties of Ni-UGSO catalyst were suggested to be: (i) the dispersion and anchoring of Ni particles by formation of nickel-iron as well as nickel-magnesium mixed oxides, (ii) the lack of free metallic phases through the formation of Ni-Fe alloys after reduction pre-treatment, and (iii) the basic characteristic of UGSO due to the presence of oxides such as MgO, CaO, K₂O and MnO, which could promote dissociative adsorption of water and boost WGS reaction. These results proved the capability of Ni promoted UGSO to act as a powerful GSR catalyst. (ii) The results of a detailed study on the effects of synthesis parameters on the performance of Ni-UGSO catalyst revealed that the best GSR performance was achieved by incorporating 5 wt % Ni via solid-state impregnation method (SSI-5%Ni-UGSO), where nickel-iron mixed oxides with an optimum Ni/Fe ratio (such as NiFe₂O₄) and Mg-rich nickel-magnesium mixed oxides (such as 3MgO.NiO) were formed. The superior performance of the optimized SSI-5%Ni-UGSO catalyst is mainly due to (i) the synergic effect between Ni and partially reduced iron oxide species on the Ni-Fe[indice x]O[indice y] active sites (rather than metallic Ni and/or NiFe alloys) where glycerol is activated on the Ni species and the oxygen atoms are provided to the carbonaceous intermediate from the neighboring Fe[indice x]O[indice y], and (ii) the basic properties of MgO in close contact with Ni, which promotes the dissociation of water into hydroxyl groups and helps to gasify the coke precursors deposited on the catalyst surface. For temperatures above 580 °C, almost complete glycerol conversions to gaseous products were obtained over SSI-5%Ni-UGSO catalyst in the selected operating conditions (S/C=3, FI=1.1, GHSV=10,966 cm³ (STP) gcat⁻¹ h⁻¹). Higher H₂ yield (80.7%) and very low coke formation (0.59 mg[indice coke] h⁻¹(m²/g[indice cat)⁻¹) are the advantages of working at 580 °C by favoring the WGS reaction, whereas increasing temperature to 730 °C allows to almost suppress coke formation (0.18 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) mainly by limiting the Boudouard reaction, with the drawback of a lower hydrogen yield (59.4%). (iii) The results of a comprehensive study on the performance of M-promoted (M=1%Ru, 1%Rh, 5%Ni) UGSO catalysts (M-UGSO) for GSR process revealed that the tendency of incorporated metal to interact with Mg/Fe containing oxides already exist in UGSO, plays a crucial role in the surface availability of the corresponding metal, structural changes after reduction, and catalyst stability. Aside its best stability, 5% Ni-UGSO showed a performance (glycerol conversion to gaseous products of 100% and H₂ yield of 74%) comparable with 1% Rh-UGSO (100% and 78%, respectively) or even surpassing that of 1% Ru-UGSO (94% and 71%, respectively), as noble metal-based catalysts. Synergistic cooperation was achieved by incorporated metals(M) and Fe/Mg containing species within UGSO, resulting in enhanced glycerol and water activation. The weakest results of Ru-UGSO could be explained by a lack of proclivity for MgO-RuO₂ interaction on UGSO surface. Regarding the significantly lower price of Ni compared to Rh (1/5526 of the average price of Rh in 2018), as lightly higher hydrogen yield (78 vs. 74%) and trivial difference in coke formation (0 vs. 0.01 g[indice coke] h⁻¹ g[indice cat]⁻¹) does not economically justify the use of 1% Rh-UGSO instead of the affordable 5% Ni-UGSO. In conclusion, the results presented in this thesis proved the capability of UGSO as a promising support/promoter in the formulation of active, selective, stable, and cost-effective catalysts for hydrogen production via GSR process, owing to (i) the presence of oxides (mainly magnesium and iron oxides) recognized for their ability to avoid carbon formation(the main cause of catalyst deactivation in the steam reforming of oxygenated hydrocarbons), and (ii) the spinel crystalline structure with homogeneously distributed exchangeable metal cations that can provide a good pattern for active metal dispersion, leading to a synergic cooperation between the incorporated active metal particles (especially Ni with high availability and low price) and the other constituents of UGSO. Such approaches, in which industrial wastes from various processes are used together for environmental applications, are not only consistent with the concepts of industrial ecology and sustainable development but are also classified as the most sophisticated level of waste valorization.
|
7 |
Sustainable valorization of coal fly ash waste in conventional/intensified glycerol steam reforming for green hydrogen production / Valorisation durable des résidus de cendres volantes de charbon dans un procédé conventionnel/intensifié de vaporeformage du glycérol pour la production d'hydrogène propreGao, Kang 21 September 2023 (has links)
Parmi les combustibles renouvelables, l'hydrogène est un vecteur énergétique intéressant pour atténuer les changements climatiques dû aux émissions anthropiques de CO₂ . La plupart de l'hydrogène est actuellement produit par reformage à la vapeur (SR) à partir de combustibles fossiles. Pour des applications spécifiques, le rendement et la pureté de l'hydrogène peuvent être améliorés par un procédé intensifié en intégrant la capture in-situ du CO₂ au reformage à la vapeur en une seule étape et dans le même réacteur (SESR). Cependant, la consommation élevée et incessante de combustibles fossiles entraîne l'épuisement des ressources finies et des effets négatifs sur l'environnement. Dans le cadre d'un scénario de développement durable, écologique et économique, le recyclage et la valorisation d'une variété de déchets industriels et de matières résiduelles suscitent un intérêt croissant pour un large éventail de produits à valeur ajoutée. En particulier, la production d'hydrogène à partir de sous-produits renouvelables est largement reconnue et étudiée comme une approche prometteuse pour atténuer la crise énergétique et environnementale. L'essor de la production de biodiesel a entraîné une augmentation de la production de glycérol (C₃H₈O₃), qui peut toutefois représenter une matière première potentielle à adopter dans les technologies propres pour la conversion en hydrogène. D'autre part, un autre déchet industriel, les cendres volantes de charbon (FA), est largement généré par la combustion du charbon dans les centrales thermiques. En raison de leur grande stabilité thermique et du fait qu'elles contiennent plusieurs oxydes métalliques, les cendres volantes peuvent servir de support solide alternatif et/ou de promoteur pour le développement de catalyseurs hétérogènes. La production d'hydrogène par SR et/ou SESR présente donc des opportunités pour valoriser les déchets de glycérol et de FA dans une approche verte (GSR/SEGSR). Dans le contexte de l'importance de transformer les déchets en produits à valeur ajoutée, cette thèse traite la valorisation combinée de deux résidus industriels importants (à savoir, les FA pour le développement de catalyseurs efficaces à base de Ni (yNi-FAx) et de matériaux catalyseur-sorbant bifonctionnels (Ni-CaO-FA), et le glycérol comme matière première alternative potentielle) pour la production d'hydrogène propre et durable par les procédés GSR et SEGSR. Plus précisément, les principaux objectifs de cette recherche étaient 1) d'étudier l'influence du type de FA, de la concentration en Ni et de la température de reformage sur la performance catalytique des catalyseurs yNi-FAx, 2) de proposer une nouvelle méthode pour améliorer les capacités des FA bruts en ajustant leurs propriétés physico-chimiques à l'aide de traitements acides/alcalins, et 3) de développer des matériaux catalyseur-sorbant bifonctionnels (Ni-CaO-FA) pour l'application dans un procédé intensifié de SEGSR/régénération multi-cyclique. (1) Des catalyseurs Ni supportés par des FA (Ni-FA) ont été synthétisés par une méthode d'imprégnation à l'état solide. Nous avons étudié l'effet de différents paramètres comprenant (i) les types de FA, (ii) la concentration en Ni (2.5 - 15 % en poids), et (iii) la température de reformage (530 - 730 °C) sur la performance catalytique des catalyseurs yNi-FAx dans le GSR. La meilleure performance en termes d'activité (conversion du glycérol en produits gazeux = 98 %, rendement en hydrogène = 78.8 %) et de stabilité (faible taux de formation de coke et de frittage 2.44 mg[indice coke]•g⁻¹catalyseur•h⁻¹pendant 40 h de réaction) a été atteinte pour le catalyseur Ni-FA4 (7.5 % Ni) à 630 °C. Ces performances ont été attribuées à une dispersion élevée des sites actifs de Ni° et à une forte interaction avec le support, en raison de la surface spécifique plus élevée du FA4 et de la présence de néphéline (fournissant des sites vacants pour l'ancrage des particules de Ni) et de mullite thermostable. (2) À la lumière des performances catalytiques des catalyseurs Ni-FAx (1), des traitements acides/alcalins simples ont été réalisés pour améliorer les capacités d'un type de FA qui avait montré un très faible rendement (comme support du catalyseur à base de Ni) en régulant ses propriétés via une lixiviation-dissolution-partielle (LPD) en une étape (HNO₃ ou NaOH) ou en deux étapes (NaOH/HNO₃ ou HNO₃/NaOH). L'influence de la séquence de traitement sur l'activité des catalyseurs développés a été mise en évidence. Les résultats ont montré que l'activité catalytique des catalyseurs Ni-FA (traités) dans le GSR a été significativement améliorée par rapport aux matériaux non traités. La LPD alcaline a été plus efficace que la LPD acide pour améliorer la surface du FA et ajuster la distribution élémentaire du FA. Ni-FA(HNO₃ /NaOH) a montré la meilleure performance avec une conversion du glycérol en produits gazeux de 99.2 % et un rendement en hydrogène de 74.5 %, attribués à (i) l'élimination des espèces contenant du soufre via le LPD acide, (ii) l'amélioration de la surface spécifique, de l'exposition au fer et de la dispersion du Ni via le LPD alcaline, (iii) la réduction de la formation de coke par le traitement séquentiel LPD acide/alcaline, et (iv) l'amélioration de la stabilité catalytique due à la formation d'alliages NiFe. (3) Pour synthétiser des matériaux catalyseur-sorbant bifonctionnels, une première étape consistait à modifier un sorbant à base de CaO en ajoutant différents types de FA (FAx (x = 1 à 12)) afin de développer des sorbants à base de CaO très efficaces et économiques pour l'élimination du CO₂ à haute température. Les résultats ont montré que le sorbant CaO-FA5 (90 % en poids CaO) offrait l'activité de capture du CO₂ la plus stable sur 20 cycles, avec une capacité de capture du CO₂ de 0.58 g[indice CO2]•g[indice sorbant]⁻¹ au 1er cycle et de 0.45 g[indice CO2]•g[indice sorbant]⁻¹ au 20e cycle. Ceci a été attribué aux quantités relativement élevées de SiO₂ et de mullite (matériaux inertes) dans le FA5 par rapport aux autres échantillons FAx. La présence de ces matériaux inertes contribue à améliorer la stabilité du sorbant en empêchant l'agrégation et le frittage. Ce sorbant a ensuite été choisi pour synthétiser un matériau catalyseur-sorbant bifonctionnel pour la production d'hydrogène de haute pureté par SEGSR. Le matériau bifonctionnel Ni-CaO-FA5 a montré une pureté d'hydrogène de ~ 97 % et un rendement de ~ 90 % stables pendant 30 min (période de pre-breakthrough). Ces résultats soulignent le fort potentiel du FA5 en tant que stabilisateur à faible coût pour améliorer la stabilité des sorbants à base de CaO. En conclusion, grâce à la valorisation des matières résiduelles liquides (glycérol) et solides(cendres volantes de charbon), les résultats présentés dans cette thèse fournissent une approche économique et environnementale pour la production d'hydrogène par GSR ainsi que la capture simultanée du CO₂ et la production d'hydrogène de haute pureté par SEGSR. Même si tous les types de FA tels que reçus (bruts) ne conviennent pas comme support catalytique, de simples traitements acides/alcalins peuvent conduire à des supports de FA à faible teneur en calcium/soufre avec des caractéristiques physico-chimiques supérieures. Comme dans le cas des résidus liquides, l'utilisation de déchets solides pour la production catalytique d'hydrogène est une stratégie favorable à l'environnement et économiquement durable. Avec la crise énergétique croissante, cet aspect devient de plus en plus important et pousse à de nouvelles tentatives pour convertir davantage de déchets en produits à valeur ajoutée. / Among renewable fuels, hydrogen is an appealing energy carrier for mitigating climate change arising from the anthropogenic emissions of CO₂. Most hydrogen is currently produced by steam reforming (SR) from fossil fuels. For specific applications, hydrogen yield/purity can be enhanced via the integration of steam reforming and sorption intensification in a single step/reactor (SESR). However, the high and unceasing consumption of fossil fuels results in the exhaustion of finite resources and negative effects on the environment. With a scenario of green-economic sustainable development, there is a growing interest in the recycling and valorization of a variety of industrial wastes and residual materials to a broad spectrum of value-added products. In particular, hydrogen production from renewable byproduct substrates is widely recognized and investigated as a promising approach to mitigate energy and environmental crises. The booming of biodiesel production has resulted in the increase of glycerol (C₃H₈O₃) byproduct, which can represent however a potential feedstock candidate to be adopted in green technologies for conversion into hydrogen. On the other side, another industrial waste, coal fly ash (FA), is vastly generated from coal combustion in thermal power plants. Due to its high thermal stability and the fact that it contains several metal oxides, FA can act as potential alternative solid support and/or promotor for developing heterogeneous catalysts. The hydrogen production (SR and/or SESR) presents therefore opportunities to valorize glycerol and FA wastes in a green approach (GSR/SEGSR). In the context of the importance of turning wastes into value-added products, this thesis deals with a combined valorization of two important industrial residues (namely, FA for developing efficient Ni-based catalysts (yNi-FAx) and bifunctional catalyst-sorbent materials (Ni-CaO-FA), and glycerol as potential alternative feedstock) for sustainable green hydrogen production by GSR and SEGSR processes. More specifically, the main objectives of our work were 1) investigating the influence of FA types, Ni loading, and reforming temperature on the catalytic performance of yNi-FAx catalysts, 2) proposing a novel method for improving the properties of raw FA by adjusting the physicochemical properties using acid/alkali treatments, and 3) developing bifunctional Ni-CaO-FA catalyst-sorbent materials for multi-cyclic SEGSR/regeneration operation. (1) FA supported Ni catalysts (Ni-FA) were synthesized via solid-state impregnation method. The effect of different parameters including (i) types of FA, (ii) Ni loading (2.5 - 15 wt.%), and (iii) reforming temperature (530 - 730 °C) on the catalytic performance of yNi-FAx catalysts over GSR was investigated. The best performance in terms of activity (glycerol conversion to gas = 98 %, hydrogen yield = 78.8 %) and stability (40 h, with a low rate of coke formation and sintering 2.44 mg[subscript coke]•g⁻¹catalyst•h⁻¹) was achieved for 7.5 wt.% Ni-FA4 catalyst at 630 °C. This performance was attributed to a higher dispersion of Ni° active sites and stronger interaction with the support, due to the higher surface area of FA4 and the existence of nepheline (providing vacancy sites for anchoring Ni particles) and thermostable mullite. (2) In light of the catalytic performance of Ni-FAx catalyst (1), simple acid/alkali treatments were carried out to improve a low-efficiency FA (as support of Ni-based catalyst) by regulating its properties via one-step (HNO₃ or NaOH) or two-step (NaOH/HNO₃ or HNO₃/NaOH) leaching-partial-dissolution (LPD). The influence of the treatment sequence on the activity of the developed catalysts was highlighted. The results show that the catalytic activity of Ni-FA(treated) catalysts for GSR was significantly improved compared to the untreated materials. Alkali-LPD is more effective than acid-LPD in both improving FA’s surface area and adjusting FA’s elemental distribution. Ni-FA(HNO₃/NaOH) has the best performance with glycerol conversion to gas of 99.2 % and hydrogen yield of 74.5 %, attributed to (i) the removal of sulfur-containing species via acid-LPD, (ii) improvement of specific surface area, iron exposure, and Ni dispersion via alkali-LPD, (iii) reduction of coke formation by acid/alkali-LPD sequence treatment, and (iv) enhancement of catalytic stability due to the formation of NiFe alloys. (3) To synthesize bifunctional catalyst-sorbent materials, an attempt was initially made to modify a CaO-based sorbent by adding different types of FA (FAx (x = 1 to 12)) to develop highly efficient and economical CaO-based sorbents for CO₂ removal at high temperatures. The results showed that CaO-FA5 (90 wt.% CaO) sorbent offered the most stable CO₂ capture activity over 20 cycles, with a CO₂ capture capacity of 0.58 g[subscript CO2]•g[subscript sorbent]⁻¹ at the 1st cycle and 0.45 (g[subscript CO2]•g[subscript sorbent]⁻¹) at the 20th cycle. This was attributed to the relatively high amounts of SiO₂ and mullite (inert materials) in FA5 compared to the other FAx samples. The presence of these inert materials helps to enhance the sorbent stability by hindering their aggregation and sintering. This sorbent was then chosen to further synthesize a bifunctional catalyst-sorbent material for highly pure hydrogen production via SEGSR. The Ni-CaO-FA5 bifunctional material exhibited a stable hydrogen purity of ~ 97 % and yield of ~ 90 % for 30 min (pre-breakthrough period). These results highlight the high potential of FA5 as a low-cost stabilizer for improving the stability of CaO-based sorbents. In conclusion, through the valorization of both liquid (glycerol) and solid (coal fly ash) residual materials, the results presented in this thesis provide an economic and environmental approach to hydrogen production by GSR as well as the simultaneous CO₂ capture and high-purity hydrogen production by SEGSR. Even though not all kinds of as-received (raw) FA materials are suitable for serving as catalytic support, simple acid/alkali treatments could lead to low-calcium/sulfur FA supports with superior physicochemical features. As for different residual liquid substrates, using solid wastes to catalytically produce hydrogen is an environmentally favorable and economically sustainable strategy. With the growing energy crisis, this aspect is becoming more important and pushing forward new attempts to convert more wastes to value-added products.
|
8 |
Production de biohydrogène par digestion anaérobie dans un réacteur UASBBourque, Jean-Sébastien 13 April 2018 (has links)
Hydrogen production by anaerobic digestion is considered as one of tomorrow's clean energy source. Swine manure is also a big concern but as a problematic waste, a waste that could eventually be degraded by anaerobic digestion. The goal of this study was to combine these two subjects and design, operate, study and optimize an anaerobic reactor that could use a substrate with a heavy load of proteins like swine manure. To achieve these objectives, two experimental campaigns in an upflow anaerobic sludge blanket reactor (UASB) as weIl as an activity test campaign in bottles were conducted on granular sludge that was thermally pre-treated. The effects of teinperature, hydraulic retenti on time, pH and the use of a citrate buffer on the productivity of hydrogen and other metabolic by-products where monitored. Temperature of 55 °C gave better results (1.85 L H2·(d·Lyl)⁻¹) than 35 °C (0.078 L H2·(d·Lyl)⁻¹) and pH 5 (3.3 L H2·(d·Lyl)⁻¹) was preferable to pH 4.5 (1.75 L H2·(d·Lyl)⁻¹) and 5.5 (2.5 L H2·(d·Lyl)⁻¹) at 55 °C. A major production of lactic acid was also measured and showed up to be a major problem that influenced negatively hydrogen productivity and yield. It was also deterrnined that a citric acid buffer was inefficient and could easily be degraded at 35 °C. FinaIly, a pH 10 choc treatment improved hydrogen productivity by 50% to reach a maximum average of 3.49 L H2·(d·Lyl⁻¹) on the day that followed the recovery of the system.
|
9 |
Development of nanostructure photocatalysts based perovskite and carbon nitride materials for CO2 reduction and H2 production using solar energyVu, Nhu-Nang 02 February 2024 (has links)
Cette thèse passe en revue la production de carburant à partir d’énergie solaire de H2O et de CO2 à l'aide d'un photocatalyseur, ce qui est considéré comme l'une des solutions les plus prometteuses pour la lutte contre le réchauffement climatique et la crise du carburant. Cette thèse propose quatre nouvelles approches pour développer des photocatalyseurs nanostructures efficaces pour la réduction photocatalytique du CO2 et la production de H2. L’absorption de la lumière, la séparation des charges et les réactions de surface sont des aspects critiques qui ont un impact énorme sur la photoréduction du CO2 et la production photocatalytique de H2. Le g-C3N4 et les matériaux pérovskites sont des candidats appropriés pour ces processus, car ils offrent des caractéristiques structurelles et des propriétés exceptionnelles. Un grand nombre de photocatalyseurs nanostructures sont actuellement développés pour la photoréduction du CO2 et la production photocatalytique de H2. Les nanostructures 2D et les nanocomposites hétérostructures sont largement étudiés en raison de leurs excellentes propriétés telles que la séparation efficace et la longue durée de vie des porteurs de charge. De manière prometteuse, les nanostructures 2D et les nanocomposites des matériaux g-C3N4 et pérovskites présentent d'excellentes performances photocatalytiques, selon la littérature scientifique. Des nanofeuilles de pérovskite HCa2Ta3O10 réduites et des nanocomposites à hétérostructures g-C3N4/CdS sont des photocatalyseurs développés pour la photoréduction du CO2 sous la lumière du soleil. Les nanofeuilles de pérovskite HCa2Ta3O10 réduites sont préparées à partir de la pérovskite en couches CsCa2Ta3O10 par une méthode d'échange d'ions simple couplée à un traitement sous H2. Elles présentent une surface très élevée et une meilleure absorption de la lumière solaire. Leur large bande interdite est considérablement rétrécie par une introduction considérable de Ta+4 et de lacunes d'oxygène. En tant que support des nanoparticules de Pt et CuO, les nanofeuilles réduites présentent une activité photocatalytique de réduction du CO2 améliorée avec formation principale d'éthanol. Le nanocomposite g-C3N4/CdS hétérostructure est synthétisé par une méthode avancée développée par notre groupe en utilisant les gazes NH3 et H2S sous une haute pression créée in situ. Elle fracture la structure du C3N4, créant des nanoparticules CdS (NP) à la surface de iv la structure C3N4 modifiée. Le nanocomposite synthétisé comporte un C3N4 poreux lié aux nanoparticules CdS via le pont C-S-Cd. La structure est particulière avec la présence de nanoparticules de CdS qui favorise une photoréduction améliorée du CO2 sous la lumière du soleil avec une sélectivité élevée de production de CO. Les nanofeuilles et nanofragments de g-C3N4 sont synthétisés par de nouvelles approches en tant que photocatalyseurs pour la production de H2. Le complexe supramoléculaire de mélamine et d’acide cyanurique (MCS) avec une structure lamellaire condensée est synthétisé pour la première fois dans un autoclave à haute pression en tant que précurseur riche en N. La structure particulière du complexe MCS permet la formation directe de nanofeuilles g-C3N4 avec une surface spécifique élevée et une absorption de lumière significativement améliorée dans la région visible par le processus de traitement thermique à basse température. Les nanofeuilles telles que préparées peuvent générer un taux de production de H2 élevé en utilisant le spectre lumineux étendu à 550 nm avec une efficacité quantique élevée de 3,5%. Il est intéressant de noter que la préparation du complexe MCS induit une haute pression de NH3 et H2O, qui peut fracturer sélectivement la structure de C3N4 pour former des nanofragments avec une cristallinité élevée et des groupes fonctionnels abondants (-OH et -NH2). Les nanofragments préparés présentent des caractéristiques supérieures telles que la séparation et le transfert rapides des charges avec un excellent entraînement de charge, un niveau de bande de conduction élevé et une meilleure adsorption et activation des protons. Ils présentent une production photocatalytique exceptionnelle de H2 sous la lumière du soleil, avec un rendement quantique de 12,3% à 420 nm. / The thesis, herein, reviews solar-fuel production from H2O and CO2 using photocatalysts, which is considered as one of the most promising solutions to tackle global warming and fuel crisis. Importantly, this thesis provides four novel approaches to develop efficient nanostructured photocatalysts for both photocatalytic CO2 reduction and H2 production. Light-harvesting, charge separation, and surface reactions are critical aspects that have an enormous impact on the CO2 photoreduction and photocatalytic H2 production. g-C3N4 and perovskite materials are suitable candidates for these processes as they offer outstanding structural features and properties. A large number of nanostructured photocatalysts are currently developed for both CO2 photoreduction and photocatalytic H2 production. 2D nanostructures and nanocomposite heterostructures are widely studied because of their excellent properties such as efficient separation and long lifetime of charge carriers. Promisingly, 2D nanostructures and nanocomposites of the g-C3N4 and perovskite materials exhibit excellent photocatalytic performance, according to literature studies. Reduced HCa2Ta3O10 perovskite nanosheets and g-C3N4/CdS heterostructure nanocomposite are developed photocatalysts for the CO2 photoreduction under sunlight. Reduced HCa2Ta3O10 perovskite nanosheets are prepared from the layered perovskite CsCa2Ta3O10 by a simple ion-exchange method coupled with the H2 treatment. They exhibit very high surface area and improved sunlight absorption. Their wide-bandgap is significantly narrowed by a considerable introduction of Ta+4 and oxygen vacancies. By the support of deposited Pt and CuO nanoparticles, the reduced nanosheets exhibit an enhanced photocatalytic CO2 reduction activity with the primary formation of ethanol. g-C3N4/CdS heterostructured nanocomposite is synthesized by an advanced method developed by our group employing an in-situ-created high-pressure of NH3 and H2S. It fractures the carbon nitride framework, simultaneously creating CdS nanoparticles (NPs) on the surface of the modified C3N4 structure. The prepared nanocomposite contains a porous C3N4 structure in intimate contact with CdS nanoparticles via the C-S-Cd bridge. The distinctive structure with the presence of CdS nanoparticles favors an enhanced sunlight-driven photoreduction of CO2 with high selectivity toward CO. vi g-C3N4 nanosheets and nanofragments are synthesized by novel approaches as photocatalysts for the H2 production. Highly condensed lamellar melamine–cyanuric acid supramolecular (MCS) complex is synthesized, for the first time, in an autoclave at high pressure as the Nrich precursor. The distinctive structure of the MCS complex allows the direct formation of g-C3N4 nanosheets with high specific surface area and significantly enhanced light absorption in the visible region under low-temperature thermal treatment. The as-prepared nanosheets can generate a remarkable H2 production rate under the light spectrum extending to 550 nm with a high quantum efficiency of 3.5%. Interestingly, the preparation of the MCS complex induces a high-pressure of NH3 and H2O, which can fracture the C3N4 framework selectively to form nanofragments with high crystallinity and rich functional groups (-OH and -NH2). The prepared nanofragments display superior features such as rapid charge separation and transfer with excellent charge drive, high conduction band (CB) level, and improved proton adsorption and activation. They exhibit an outstanding photocatalytic H2 production under sunlight, with QE as high as 12.3% at 420 nm.
|
10 |
Designing an integrated renewable-penetrated electric power and hydrogen energy system (IRPHS) to address operational, integration, and economic challenges in hydrogen adoptionSahraie, Elahe 24 January 2025 (has links)
Le système électrique contribue de manière significative aux émissions mondiales de gaz à effet de serre. L'intégration des sources d'énergie renouvelable dans le système électrique est considérée comme une voie principale vers la décarbonisation. Cependant, l'augmentation de la pénétration des sources d'énergie renouvelable présente des défis, notamment des problèmes de flexibilité spatiale et temporelle et de congestion du système. La variabilité inhérente et la diversité géographique de nombreuses sources d'énergie renouvelable aggravent ces problèmes. Pour atténuer ces difficultés, l'expansion des réseaux de transmission d'électricité et l'adoption de solutions de stockage d'énergie sont nécessaires, ce qui entraîne une augmentation des dépenses opérationnelles et des investissements. Une alternative prometteuse et raisonnable consiste à utiliser des systèmes énergétiques multi-porteurs dans des systèmes électriques à forte pénétration de renouvelables via les technologies de conversion d'énergie power-to-X et des solutions de stockage en vrac. L'efficacité d'un système énergétique multi-porteurs dépend du choix d'un vecteur énergétique approprié. L'hydrogène, en tant qu'alternative dans la transition énergétique durable, possède des caractéristiques chimiques et techniques qui en font un choix fiable en tant que vecteur énergétique prometteur. Malgré le potentiel des systèmes énergétiques à hydrogène pour la décarbonisation, des défis importants existent tant au niveau des composants qu'au niveau du système. Ces défis incluent l'absence d'un cadre d'intégration adéquat entre les systèmes énergétiques à hydrogène et les systèmes électriques à forte pénétration de renouvelables, ainsi que des structures de tarification et de commercialisation de l'hydrogène insuffisantes. De plus, un système de transport de l'hydrogène adéquat est nécessaire pour réduire les coûts associés aux retards de livraison et aux itinéraires temporaires imprévus. Pour mieux comprendre les limitations de l'adoption des systèmes énergétiques à hydrogène dans la décarbonisation du système énergétique et les solutions potentielles, une analyse critique a été menée dans cette thèse. Cette analyse couvre l'électrification et l'intégration des systèmes énergétiques à hydrogène, des sources d'énergie renouvelable et des systèmes énergétiques multi-porteurs. Les défis liés à l'intégration des systèmes énergétiques à hydrogène sont classés au niveau des composants et au niveau du système. Au niveau des composants, les aspects technologiques de la production, du stockage, du transport et du ravitaillement en hydrogène sont explorés. Au niveau du système, la coordination des systèmes énergétiques à hydrogène, les cadres de marché de l'hydrogène et les défis d'adoption sont évalués. Pour relever les défis de l'exploitation intégrée, cette thèse propose un mécanisme d'intégration à deux niveaux qui relie les contraintes d'exploitation et de planification. De plus, un cadre intégré pour les systèmes électriques à forte pénétration de renouvelables et les systèmes énergétiques à hydrogène est proposé. Ce cadre inclut des systèmes électriques à forte pénétration de renouvelables, des systèmes énergétiques à hydrogène, des systèmes de transport urbain, un mélange de charges électriques et électrifiées variables dans le temps, ainsi que des stockages d'hydrogène à court et à long terme. Dans le cas de la livraison d'hydrogène, cette thèse propose un système de transport d'hydrogène qui intègre les paramètres du système de transport urbain en utilisant une version étendue du problème de routage de véhicules. Ce système est conçu pour tenir compte des paramètres opérationnels des systèmes de transport urbain, tels que les contraintes de routage, la densité du trafic, la priorité de l'approvisionnement des charges sensibles, les retards de livraison potentiels et les coûts de dispatching de l'hydrogène. Des remorques-tubes à hydrogène sont utilisées pour livrer l'hydrogène à travers le système de transport urbain. De plus, un nouvel ensemble de contraintes pour intégrer les conditions de fonctionnement des systèmes de transport urbain est inclus. Un compromis entre la fiabilité du système et l'accessibilité économique est géré en attribuant des poids ajustables aux fonctions objectives opérationnelles. Pour répondre aux défis économiques, un mécanisme de tarification de l'hydrogène basé sur la synergie au sein du cadre intégré est proposé. Le mécanisme proposé est conçu en fonction du niveau de synergie entre les systèmes énergétiques à hydrogène et les systèmes électriques à forte pénétration de renouvelables au sein d'un cadre intégré de systèmes électriques à forte pénétration de renouvelables et de systèmes énergétiques à hydrogène. Cette approche représente avec précision les contraintes d'intégration dans le modèle de tarification. La programmation stochastique basée sur des scénarios et la méthode de direction alternée des multiplicateurs (ADMM) sont employées pour aborder les incertitudes dans la production d'énergie renouvelable. L'ADMM réduit les complexités du problème d'exploitation des systèmes intégrés de systèmes électriques à forte pénétration de renouvelables et de systèmes énergétiques à hydrogène et aide à quantifier les niveaux d'intégration. De plus, une approche d'échange de données est adoptée en utilisant l'ADMM pour améliorer l'échange de plans entre les systèmes électriques à forte pénétration de renouvelables et les systèmes énergétiques à hydrogène. L'ensemble de la recherche évalue les avantages de l'exploitation intégrée par rapport à l'exploitation autonome, en se concentrant sur la flexibilité dans la production, le transport et le stockage de l'hydrogène. Les problèmes d'intégration des systèmes électriques à forte pénétration de renouvelables et des systèmes énergétiques à hydrogène, ainsi que des mécanismes de tarification de l'hydrogène, sont formulés comme un problème linéaire en nombres entiers. Ces problèmes sont résolus à l'aide du solveur Gurobi avec la boîte à outils YALMIP dans MATLAB et Pyomo dans Python sur un ordinateur de bureau équipé d'un processeur Intel(R) Core(TM) i7-6700HQ de 5e génération et de 16 Go de RAM. Les résultats mettent en évidence une production d'hydrogène rentable, une efficacité accrue et des avantages économiques dans le déploiement des sources d'énergie renouvelable grâce à la méthodologie d'intégration proposée. De plus, les mécanismes d'intégration et de tarification proposés permettent des améliorations tant dans les systèmes électriques à forte pénétration de renouvelables que dans les systèmes énergétiques à hydrogène, améliorant ainsi l'efficacité, le rapport coût-efficacité et la fiabilité globales du système. / The electric power system significantly contributes to global greenhouse gas emissions. The integration of renewable energy sources into the electric power system is viewed as a primary path toward decarbonization. However, increased penetration of renewable energy sources presents challenges, including spatial and temporal flexibility issues and system congestion. The inherent variability and geographical diversity of many renewable energy sources exacerbate these problems. To mitigate these issues, the expansion of power transmission networks and the adoption of energy storage solutions are necessary, leading to increased operational and investment expenditures. A promising and reasonable alternative involves employing multi-carrier energy systems in renewable-penetrated electric power systems via power-to-X technologies and bulk storage. The effectiveness of a multi-carrier energy system depends on selecting an appropriate energy carrier. Hydrogen, as an alternative in the sustainable energy transition, possesses chemical and technical characteristics that make it a reliable choice as a promising energy carrier. Despite the potential of hydrogen energy systems for decarbonization, significant challenges exist at both component and system levels. These challenges include the lack of a proper integration framework between hydrogen energy systems and renewable-penetrated electric power systems and deficient hydrogen pricing and marketing structures. Additionally, a proper hydrogen transportation system is needed to reduce costs associated with delivery delays and unplanned temporary routings. To better understand the limitations of hydrogen energy system adoption in energy system decarbonization and potential solutions, an analytical review has been conducted in this thesis. This review covers the electrification and integration of hydrogen energy systems, renewable energy sources, and multi-carrier energy systems. Hydrogen energy system integration challenges are categorized into component and system levels. At the component level, technological aspects of hydrogen generation, storage, transportation, and refueling are explored. At the system level, hydrogen energy system coordination, hydrogen market frameworks, and adoption challenges are evaluated. To address the integrated operation challenges, this thesis proposes a two-layer integration mechanism that bridges operation and planning constraints. Additionally, an integrated renewable-penetrated electric power and hydrogen energy system framework is proposed. This framework includes renewable-penetrated electric power systems, hydrogen energy systems, urban transportation systems, a mix of time-varying electric and electrified loads, and both short- and long-term hydrogen storage. In the case of hydrogen delivery, this thesis proposes a hydrogen transportation system that incorporates urban transportation system parameters using an extended version of the vehicle routing problem. This system is designed to accommodate operational parameters of urban transportation systems, such as routing constraints, traffic density, the priority of supplying sensitive loads, potential delivery delays, and hydrogen dispatching costs. Hydrogen tube trailers are used to deliver hydrogen across the urban transportation system. Additionally, a new set of constraints for incorporating urban transportation system operation conditions are included. A trade-off between system reliability and cost-affordability is managed by assigning adjustable weights to operating objective functions. To address economic challenges, a synergy-based hydrogen pricing mechanism within the integrated framework is proposed. The proposed mechanism is designed based on the level of synergy between hydrogen energy systems and renewable-penetrated electric power systems within an integrated renewable-penetrated electric power and hydrogen energy system. This approach accurately represents integration constraints within the pricing model. Scenario-based stochastic programming and the alternating direction method of multipliers (ADMM) are employed to tackle uncertainties in renewable power generation. The ADMM reduces the complexities of the integrated renewable-penetrated electric power and hydrogen energy system operation problem and helps in quantifying integration levels. Additionally, a data exchange approach is adopted using the ADMM to enhance plan exchange between renewable-penetrated electric power systems and hydrogen energy systems. The entire research evaluates the benefits of integrated versus stand-alone operation, focusing on flexibility in hydrogen generation, transportation, and storage. The integrated renewable-penetrated electric power and hydrogen energy system and hydrogen pricing mechanism problems are formulated as a mixed-integer linear problem. These problems are solved using the Gurobi solver with the YALMIP toolbox in MATLAB and Pyomo in Python on a desktop with a 5th generation Intel(R) Core(TM) i7-6700HQ CPU and 16GB RAM. The findings highlight cost-efficient hydrogen generation, enhanced efficiency, and economic benefits in renewable energy source deployment through the proposed integration methodology. Additionally, the proposed integration and pricing mechanisms demonstrate improvements in both renewable-penetrated electric power systems and hydrogen energy systems, enhancing overall system efficiency, cost-effectiveness, and reliability.
|
Page generated in 0.1045 seconds