• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 10
  • 10
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la (stéréo)sélectivité et d'interactions non covalentes à l’échelle de la molécule unique sur le Pt(111)

Goubert, Guillaume 23 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / Le travail décrit au sein de cette thèse a pour objectif l’exploration des phénomènes liés au transfert de chiralité à des sites uniques sur une surface catalytique. Plus précisemment, le but est d’effectuer des études dynamiques de la stéréochimie sur des molécules uniques. Au cours de ce travail, plusieurs problématiques ont été explorées : 1. La question du transfert de chiralité sur une surface de catalyseur, le Pt(111). En particulier, le cas du transfert d’information chirale d’un modificateur chiral vers un substrat prochiral est étudié, les deux molécules étant liées de façon non-covalente. 2. L’étude et la définition de sites catalytiques uniques sur un catalyseur métallique, le Pt(111). 3. Le comportement dynamique de réactifs à des sites catalytiques uniques. Pour réaliser cette étude, on a utilisé le microscope à effet tunnel (STM), sur une surface de Pt(111) sous ultra haut vide (UHV), pour obtenir des images possédant une résolution moléculaire et sousmoléculaire des réactifs. Des images précises des assemblages entre modificateurs et réactifs peuvent ainsi être obtenues et les assemblages peuvent être classés en familles distinctes. L’acquisition de séries d’images dans le temps permet également d’obtenir une information dynamique sur la formation et la transformation des assemblages. Des expériences de spectroscopie vibrationnelle ont également été réalisées. Ces résultats expérimentaux en science des surfaces sont complétés par des calculs théoriques en théorie fonctionnelle de la densité (DFT) effectués par nos collaborateurs du groupe Hammer de l’Université d’Aarhus au Danemark. La synthèse de molécules et les tests en solution ont été effectués par les membres du groupe Boukouvalas du département de chimie de l’Université Laval. Cette méthode expérimentale permet l’étude de sites catalytiques uniques. La problématique de l’analyse des sites actifs sur un catalyseur est au coeur de la recherche en catalyse hétérogène moderne. Notre méthode est une des voies de recherche, complémentaire des études in situ et operando sur les catalyseurs en conditions réelles. En effet, le STM permet de caractériser des molécules uniques et de séparer espèces actives et spectatrices. Il ne fournit cependant pas d’information chimique directe. En effet, le courant tunnel ne donne pas d’information sur la source des électrons ou des atomes à travers lesquels les électrons ont pu passer. C’est pour cette raison que les calculs théoriques et les mesures de spectroscopie vibrationnelle sont importantes pour la compréhension des phénomènes de surface. En premier lieu, on a suivi dans le temps la déshydrogénation de l’ethylnaphtalène (chapitre 2) puis le bris d’une liaison C−N dans le pantoyl-naphtyléthylamine (PNEA) pour former une aminolactone chirale, décrite au chapitre 3. Cette dernière réaction n’était auparavant pas connue dans la litérature et l’effet de cette aminolactone sur le transfert de chiralité n’avait donc pas été envisagé. La dernière réaction étudiée est l’hydrogénation partielle du 2,2,2-trifluoroacétophénone (TFAP) au chapitre 5. Ce dernier cas a permis d’isoler un intermédiaire dans l’hydrogénation du TFAP, le produit final de l’hydrogénation, l’alcool, n’a pas été observé. La détermination de la structure chimique de cet intermédiaire a été possible en observant un changement dans la géométrie des assemblages bimoléculaires formés en fonction de la température, avec le support de calculs théoriques. Ce dernier cas montre que la géométrie des assemblages intermoléculaires est un marqueur utile de l’état chimique des espèces en surface. Il en résulte qu’une grande partie des résultats de cette thèse concerne l’identification et la caractérisation des liaisons non covalentes qui mènent aux assemblages intermoléculaires, en particulier les liaisons hydrogène faibles qui peuvent se former entre un carbonyle et les hydrogènes d’un groupement aryle ou alkyle dans le chapitre 2. La capacité de ces interactions à créer des assemblages intermoléculaire et à contrôler leur géométrie même en présence d’interactions fortes entre les molécules organiques et la surface métallique a également été étudiée. Dans le cas d’adsorbat chiraux, l’étude des assemblages intermoléculaires permet de comprendre les mécanismes de transfert de chiralité. En effet, dans le cas d’une réaction asymétrique sur une surface métallique les réactifs sont immobilisés dans une géométrie particulière par un modificateur chiral. Il est donc possible de découper la réaction à un site asymétrique comme suit : 1. Adsorption des réactifs 2. Rencontre du réactif avec le modificateur et formation d’assemblages énantiosélectifs. 3. Réaction au sites asymétrique et formation d’un énantiomère du produit de façon préférentielle. Il en découle que l’étude des assemblages énantiosélectifs permet de mieux comprendre le transfert de chiralité. C’est ce qui a été réalisé au chapitre 3 pour l’étude des assemblages entre l’aminolactone chirale formée in-situ avec le TFAP et le cétopantolactone (KPL). On a ainsi montré qu’en présence de KPL, des assemblages multimoléculaires sont formés. Ce mode d’interaction n’avait jamais été observé ni postulé dans la littérature pour des systèmes catalytiques asymétriques. Dans le chapitre 4, les assemblages entre le méthylebenzoyl formate (MBF) et le (R)-1-(1-naphtyléthyleamine) (R)-NEA) ont été étudiés. On a examiné s’il était possible généraliser les résultats obtenus précédemment sur les assemblages entre le (R)-NEA et le TFAP [1] puis le méthyle trifluoropyruvate (MTFP) [2], pour expliquer le rôle des liaisons hydrogène, de la répulsion stérique et des sites d’adsorption sur la géométrie des assemblages. La dernière partie de mes travaux concerne l’étude de la diffusion des réactifs sur la surface, en particulier le (R)-NEA) et le TFAP aux chapitres 6 et 7. Nous avons montré que la diffusion des deux conformères du (R)-NEA) est très différentes, ce qui montre que c’est un marqueur précis de la structure chimique. La diffusion peut être considérée comme une autre façon d’attaquer le problème du transfert de chiralité. En effet la liberté de diffusion des réactifs contrôle l’accès aux différents sites catalytiques et le passage de l’un à l’autre comme on le montre au chapitre 7.
2

Sustainable hydrogen production by glycerol steam reforming over metallurgical waste-driven catalysts / Production durable d'hydrogène par reformage à la vapeur de glycérol sur catalyseurs à base d'un déchet métallurgique

Ali Zadeh Sahraei, Ommolbanin 17 May 2022 (has links)
Les crises liées à la dégradation de l'environnement et à la diminution des ressources naturelles renforcent la nécessité de prolonger la durée de vie de tout matériau résiduel ou sous-produit indésirable dans les systèmes de production et de consommation. Dans ce contexte, l'idée de développer de nouveaux catalyseurs en utilisant des déchets solides industriels est un sujet émergent, qui s'inscrit bien dans le concept de développement durable. D'autre part, en raison des progrès rapides de la technologie, de l'industrie et de l'information, l'offre en énergie sera difficilement capable de répondre à la demande mondiale croissante. L'importance de fournir cette énergie de manière durable afin de rencontrer les objectifs des efforts mondiaux de lutte contre les changements climatiques a renforcé l'intérêt pour le développement de biocarburants hydrocarbonés renouvelables tels que le biodiesel. Au cours des dernières décennies, avec la croissance de la production de biodiesel, le monde a été confronté à un excédent de glycérol comme sous-produit résiduel provenant du processus de production commun de transestérification. Afin de réduire l'impact environnemental négatif de cet excédent de glycérol et d'accroître la rentabilité de l'industrie du biodiesel, ce déchet devrait être impliqué dans une économie circulaire environnementale et durable. De récentes recherches ont démontré qu'il existe un grand potentiel pour l'utilisation du glycérol résiduel du biodiesel dans le secteur des énergies renouvelables. Il est possible d'y parvenir par divers procédés, notamment la gazéification, la pyrolyse, la combustion, la liquéfaction et le reformage à la vapeur. Parmi ceux-ci, le reformage à la vapeur est considéré comme l'une des méthodes les plus prometteuses pour convertir le glycérol en hydrogène (en tant que vecteur d'énergie verte et matière première essentielle dans les raffineries et les industries chimiques), car sa mise à l'échelle industrielle ne nécessiterait pas de modifications importantes des infrastructures de reformage du gaz naturel existantes. Compte tenu de l'importance de ces enjeux, cette thèse se penche sur le développement de nouveaux catalyseurs par la valorisation d'un résidu solide métallurgique (UGSO) pour la production d'hydrogène (syngas) via le reformage à la vapeur de glycérol (GSR). Plus précisément, les trois principaux objectifs de cette étude sont les suivants: (i) l'étude du potentiel de l'UGSO comme support/promoteur pour catalyseurs à base de Ni (Ni-UGSO), (ii) l'analyse approfondie de l'effet des paramètres de synthèse du catalyseur (charge de métal actif et méthode de préparation) sur les propriétés physico-chimiques et la performance du catalyseur, ainsi que l'étude de l'effet de la température de réaction en examinant le rôle des principales réactions secondaires dans le réseau réactionnel du procédé reformage (y compris les réactions de water-gas shift (WGS), de Boudouard, de méthanisation du CO et du CO₂, et la réaction inverse de WGS), et (iii) la comparaison des caractéristiques structurelles et de la performance catalytique du Ni-UGSO avec celles des catalyseurs à base de métaux nobles(Ru-UGSO et Rh-UGSO) reconnus comme hautement efficaces dans les procédés de reformage à la vapeur. (i) Le catalyseur préparé par l'incorporation de 12,5 % massique de Ni dans l'UGSO a été évalué pour l'application dans le procédé de GSR dans des conditions opératoires spécifiques suggérées comme optimales par l'analyse thermodynamique (T=580 °C, P=1 bar, et S/C=3). En comparant avec un catalyseur commercial de reformage à la vapeur à base de Ni, les résultats furent prometteurs, notamment en termes de formation de coke. Les principales propriétés intéressantes du catalyseur Ni-UGSO ont été suggérées comme étant : (i) la dispersion et l'ancrage des particules de Ni par la formation d'oxydes mixtes nickel-fer ainsi que nickel-magnésium, (ii) l'absence de phases métalliques libres par la formation d'alliages Ni-Fe après un prétraitement de réduction, et (iii) le caractère basique de l'UGSO dû à la présence d'oxydes tels que MgO, CaO, K₂O et MnO, qui pourrait favoriser l'adsorption dissociative de l'eau et la réaction de WGS. Ces résultats ont prouvé la capacité de l'UGSO promu par le Ni à agir comme un puissant catalyseur dans le procédé de GSR. (ii) Les résultats d'une étude détaillée sur les effets des paramètres de synthèse sur la performance du catalyseur Ni-UGSO ont révélé que la meilleure performance catalytique GSR a été obtenue en incorporant 5 % massique de Ni par la méthode d'imprégnation à l'état solide (SSI-5%Ni-UGSO), où des oxydes mixtes nickel-fer avec un rapport Ni/Fe optimal (comme NiFe₂O₄) et des oxydes mixtes nickel-magnésium riches en Mg (comme 3MgO.NiO) ont été formés. La performance supérieure du catalyseur SSI-5%Ni-UGSO optimisé est principalement due à (i) l'effet synergique entre le Ni et les espèces d'oxyde de fer partiellement réduites sur les sites actifs Ni-Fe[indice x]O[indice y] (plutôt que les alliages métalliques Ni et/ou NiFe) où le glycérol est activé sur les espèces Ni et les atomes d'oxygène sont fournis à l'intermédiaire carboné à partir du Fe[indice x]O[indice y] voisin, et (ii) aux propriétés fondamentales du MgO en contact étroit avec le Ni, qui favorise la dissociation de l'eau en groupes hydroxyle et aide à gazéifier les précurseurs de coke déposés sur la surface du catalyseur. Pour des températures supérieures à 580 °C, des conversions presque complètes du glycérol en produits gazeux ont été obtenues avec le catalyseur SSI-5%Ni-UGSO dans les conditions opératoires choisies (S/C=3, FI=1.1, GHSV=10,966 cm³ (STP) gcat⁻¹ h⁻¹). Un rendement en H₂ plus élevé (80.7 %) et une très faible formation de coke (0.59 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) sont des avantages de l'opération à 580 °C en favorisant la réaction WGS, tandis que l'augmentation de la température à 730 °C permet de supprimer presque entièrement la formation de coke (0.18 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) principalement en limitant la réaction de Boudouard, avec l'inconvénient d'un rendement en hydrogène plus faible (59.4 %). (iii) Les résultats d'une étude exhaustive sur la performance des catalyseurs UGSO promus au M (M= 1%Ru, 1%Rh, 5%Ni) ont révélé que la tendance du métal incorporé à interagir avec les oxydes contenant du Mg/Fe déjà existants dans l'UGSO joue un rôle crucial (i) dans la disponibilité de surface du métal correspondant, (ii) les changements structurels après réduction et (iii) la stabilité du catalyseur. En plus d'offrir une meilleure stabilité, le catalyseur 5% Ni-UGSO a montré une performance (conversion du glycérol en produits gazeux de 100% et rendement en H₂ de 74%) comparable à celle de 1% Rh-UGSO (100% et 78%, respectivement) ou même dépassant celle de 1% Ru-UGSO (94% et 71%, respectivement), en tant que catalyseurs à base de métaux nobles. Une coopération synergique entre les métaux incorporés (M) et les espèces contenant du Fe/Mg au sein de l'UGSO a permis d'améliorer l'activation du glycérol et de l'eau. Les résultats plus faibles observés pour Ru-UGSO pourraient s'expliquer par un manque de propension à l'interaction MgO-RuO₂ sur la surface de l'UGSO. Compte tenu du prix nettement inférieur du Ni par rapport au Rh (1/5526 du prix moyen du Rh en 2018), un rendement en hydrogène légèrement supérieur (78 contre 74 %) et une différence insignifiante dans la formation de coke (0 contre 0,01 g[indice coke] h⁻¹ gcat⁻¹) ne justifient pas économiquement l'utilisation du catalyseur 1 % Rh-UGSO à la place de 5 % Ni-UGSO. En conclusion, les résultats présentés dans cette thèse prouvent la capacité de l'UGSO comme support/promoteur prometteur dans la formulation de catalyseurs actifs, sélectifs, stables et rentables pour la production d'hydrogène via le procédé de GSR, spécialement en raison de(i) la présence d'oxydes (principalement des oxydes de magnésium et de fer) reconnus pour leur capacité à éviter la formation de carbone (la principale cause de désactivation du catalyseur dans le reformage à la vapeur des hydrocarbures oxygénés) et (ii) sa structure cristalline de type spinelle avec des cations métalliques échangeables distribués de manière homogène, qui peut fournir une bonne matrice pour la dispersion de métaux actifs conduisant à une coopération synergique entre les particules de métaux actifs incorporées (en particulier le Ni, très accessible et bon marché) et les autres constituants déjà présents dans l'UGSO. De telles approches, dans lesquelles les déchets industriels issus de divers procédés sont utilisés ensemble pour des applications environnementales, sont non seulement cohérentes avec les concepts d'écologie industrielle et de développement durable, mais sont également classées comme le niveau le plus sophistiqué de valorisation des déchets. / The crises related to the environmental degradation and shrinking natural resources reinforces the necessity of extending the life of any residual material or unwanted by-product in the production and consumption systems. In this context, the idea of developing new catalysts using industrial solid wastes is an emerging topic, which aligns well with the concept of sustainable development. On the other hand, due to the rapid technological, industrial, and informational advancements, the energy supply will not be able to keep up with the growing demand. The importance of supplying this energy in a sustainable manner in order to meet the goals of global efforts to combat climate change has heightened interest in the development of renewable hydrocarbon biofuels such as biodiesel. Over the last few decades, with the growth in biodiesel production, the world has faced a surplus of glycerol as a waste by-product of its common production process through transesterification. To reduce the negative environmental impact of this excess glycerol and to make the biodiesel industry profitable, this waste should contribute to a sustainable environmental circular economy. Recent research has indicated that there is a great potential for the use of biodiesel waste glycerol in the renewable energy sector. This can be achieved through a variety of processes including gasification, pyrolysis, combustion, liquefaction, and steam reforming. Among them, catalytic steam reforming is considered as one of the most promising methods for converting glycerol into hydrogen (as a green energy carrier and a critical feedstock in refineries and chemical industries), since its industrial scale-up would not necessitate significant changes to existing natural gas reforming infrastructure. Given the importance of these issues, this thesis focuses on the development of new catalysts through valorization of a metallurgical solid residue (UGSO) for hydrogen (syngas) production via steam reforming of biodiesel waste glycerol (GSR). More specifically, the three main objectives of our work include:(i) investigating the potential of UGSO as a support/promoter for Ni-based catalysts, (ii) performing a thorough investigation on the effect of catalyst synthesis parameters (active metal loading and catalyst preparation method) on both physicochemical properties and catalyst performance, as well as studying the effect of operating temperature by examining the role of the main side reactions in the reaction network (including water gas shift (WGS), Boudouard, CO and CO₂ methanation, and reverse WGS reactions), and finally (iii) comparing the structural characteristic and catalytic performance of the optimized Ni-UGSO with noble metal based catalysts (Ru-UGSO and Rh-UGSO) with well-known high efficiency for steam reforming process. (i) The catalyst prepared by the incorporation of 12.5 wt % Ni into UGSO was evaluated for application in GSR process at specific operating conditions suggested as optimum by thermodynamic analysis (T=580 °C, P=1 bar, and S/C=3). By comparing with a Ni-based commercial steam reforming catalyst, the results were very promising especially in terms of coke formation. The main reasons for the interesting properties of Ni-UGSO catalyst were suggested to be: (i) the dispersion and anchoring of Ni particles by formation of nickel-iron as well as nickel-magnesium mixed oxides, (ii) the lack of free metallic phases through the formation of Ni-Fe alloys after reduction pre-treatment, and (iii) the basic characteristic of UGSO due to the presence of oxides such as MgO, CaO, K₂O and MnO, which could promote dissociative adsorption of water and boost WGS reaction. These results proved the capability of Ni promoted UGSO to act as a powerful GSR catalyst. (ii) The results of a detailed study on the effects of synthesis parameters on the performance of Ni-UGSO catalyst revealed that the best GSR performance was achieved by incorporating 5 wt % Ni via solid-state impregnation method (SSI-5%Ni-UGSO), where nickel-iron mixed oxides with an optimum Ni/Fe ratio (such as NiFe₂O₄) and Mg-rich nickel-magnesium mixed oxides (such as 3MgO.NiO) were formed. The superior performance of the optimized SSI-5%Ni-UGSO catalyst is mainly due to (i) the synergic effect between Ni and partially reduced iron oxide species on the Ni-Fe[indice x]O[indice y] active sites (rather than metallic Ni and/or NiFe alloys) where glycerol is activated on the Ni species and the oxygen atoms are provided to the carbonaceous intermediate from the neighboring Fe[indice x]O[indice y], and (ii) the basic properties of MgO in close contact with Ni, which promotes the dissociation of water into hydroxyl groups and helps to gasify the coke precursors deposited on the catalyst surface. For temperatures above 580 °C, almost complete glycerol conversions to gaseous products were obtained over SSI-5%Ni-UGSO catalyst in the selected operating conditions (S/C=3, FI=1.1, GHSV=10,966 cm³ (STP) gcat⁻¹ h⁻¹). Higher H₂ yield (80.7%) and very low coke formation (0.59 mg[indice coke] h⁻¹(m²/g[indice cat)⁻¹) are the advantages of working at 580 °C by favoring the WGS reaction, whereas increasing temperature to 730 °C allows to almost suppress coke formation (0.18 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) mainly by limiting the Boudouard reaction, with the drawback of a lower hydrogen yield (59.4%). (iii) The results of a comprehensive study on the performance of M-promoted (M=1%Ru, 1%Rh, 5%Ni) UGSO catalysts (M-UGSO) for GSR process revealed that the tendency of incorporated metal to interact with Mg/Fe containing oxides already exist in UGSO, plays a crucial role in the surface availability of the corresponding metal, structural changes after reduction, and catalyst stability. Aside its best stability, 5% Ni-UGSO showed a performance (glycerol conversion to gaseous products of 100% and H₂ yield of 74%) comparable with 1% Rh-UGSO (100% and 78%, respectively) or even surpassing that of 1% Ru-UGSO (94% and 71%, respectively), as noble metal-based catalysts. Synergistic cooperation was achieved by incorporated metals(M) and Fe/Mg containing species within UGSO, resulting in enhanced glycerol and water activation. The weakest results of Ru-UGSO could be explained by a lack of proclivity for MgO-RuO₂ interaction on UGSO surface. Regarding the significantly lower price of Ni compared to Rh (1/5526 of the average price of Rh in 2018), as lightly higher hydrogen yield (78 vs. 74%) and trivial difference in coke formation (0 vs. 0.01 g[indice coke] h⁻¹ g[indice cat]⁻¹) does not economically justify the use of 1% Rh-UGSO instead of the affordable 5% Ni-UGSO. In conclusion, the results presented in this thesis proved the capability of UGSO as a promising support/promoter in the formulation of active, selective, stable, and cost-effective catalysts for hydrogen production via GSR process, owing to (i) the presence of oxides (mainly magnesium and iron oxides) recognized for their ability to avoid carbon formation(the main cause of catalyst deactivation in the steam reforming of oxygenated hydrocarbons), and (ii) the spinel crystalline structure with homogeneously distributed exchangeable metal cations that can provide a good pattern for active metal dispersion, leading to a synergic cooperation between the incorporated active metal particles (especially Ni with high availability and low price) and the other constituents of UGSO. Such approaches, in which industrial wastes from various processes are used together for environmental applications, are not only consistent with the concepts of industrial ecology and sustainable development but are also classified as the most sophisticated level of waste valorization.
3

Production of bioactive lactobionic acid using a novel catalytic method

Vlad-Cristea, Mirela Simona 12 April 2018 (has links)
La faisabilité de l'oxydation du lactose vers l'acide lactobionique en milieu alcalin en présence d'un catalyseur bimétallique hétérogène Bi-Pd supporté sur la silice mesostructurée, SBA-15, a été étudiée dans un réacteur discontinu agité. Les objectifs étaient : (i) la formulation du catalyseur bimétallique avec la charge optimale des métaux sur le support, (ii) l'optimisation des conditions de réaction: la température, le débit d'air, le rapport métal/lactose, le pH; (iii) l'évaluation de la stabilité du catalyseur et de sa performance dans des études à plus grande échelle. Les réactions ont été effectuées à des températures comprises entre 38 et 80°C et le pH situé entre 7 et 9. Le catalyseur 1.02% Pd 0.64% Bi/SBA-15 avec un rapport molaire de Bi:Pd=0.3 a montré une activité et une sélectivité envers l'acide lactobionique les plus élevées. Les conditions optimales du procédé ont été déterminés à 65°C et à un pH de 9 avec un contrôle strict de l'oxygène dissous (<1% à la concentration d'équilibre de l'oxygène à la température de la réaction). Après 3 heures de réaction, le nouveau catalyseur a montré une très bonne stabilité à la lixiviation des métaux. L'activité et la sélectivité du nouveau catalyseur sont reliés à l'alliage Bi|.75Pd trouvé. / The feasibity of microaerial oxidation of lactose to lactobionic acid (LBA) in alkaline medium over heterogeneous bimetallic Bi-Pd catalyst supported on mesostructured silica material, SBA-15 in an agitated batch reactor was studied. The objectives were: (i) formulation of the bimetallic catalyst with optimum metal loading on the support, (ii) optimization of reaction conditions, metal/lactose ratio, temperature, airflow, pH of the reaction and (iii) evaluation of catalyst stability and its performance in scale-up studies. Reactions were carried out in a range of temperature (38 - 80°C) and pH (7-9). The 1.02%Pd 0.64%Bi/SBA-15 catalyst with Bi:Pd=0.3 molar ratio showed the highest activity and selectivity towards lactobionic acid. The optimal conditions were found at 65°C and pH 9 with a systematic control of dissolved oxygen (<1% of 02 equilibrium concentration at reaction temperature). After 3 hours of reaction, the novel catalyst has shown to have a very good stability against metals leaching. The activity and selectivity of the novel catalyst appear to relate to Bii.75 Pd alloy.
4

Synthèse de matériaux nanocomposites par assemblage de nanoparticules métalliques (Au, Cu) et d'oxydes de métaux (TiO₂, ZrO₂) pour application en catalyse

Mrabet, Driss 13 April 2018 (has links)
Les nanoparticules de métaux supportés sont une large famille de catalyseurs dont l'effet synergétique entre le métal et support a été mis en évidence récemment dans de nombreux travaux. L'utilisation d'un support nanométrique, plutôt qu'un support conventionnel, permet d'amplifier l'effet de synergie. L'objectif de ce travail est d'étudier la synthèse de matériaux nanocomposites constitués de l'association de nanoparticules métalliques et de nanoparticules d'oxydes de métaux préalablement synthétisées, et d'évaluer leurs propriétés catalytiques. Les nanocomposites devront présenter une certaine porosité afin de permettre l'accès de molécules aux sites actifs (nanoparticules métalliques). Quatre types de nanoparticules stabilisées par des tensioactifs ont été synthétisées en milieu apolaire à savoir Ti02, Zr02, Au et Cu. Des systèmes composites binaires ont été préparés à partir de suspensions de nanoparticules d'oxydes métalliques et de nanoparticules métalliques. Les nanoparticules et les nanocomposites ont été caractérisés par différentes méthodes telles que la microscopie électronique à transmission, la volumétrie d'azote, la diffraction des rayons X, la spectroscopie infrarouge à transformée de Fourier et l'absorption atomique. Les propriétés catalytiques des nanocomposites ont été évaluées à l'aide de la réaction d'oxydation complète de CO. Leurs performances ont été comparées à celles d'un catalyseur conventionnel à base de platine (0.40/0 Ptl Ah03). Les résultats montrent que la taille des différentes nanoparticules est comprise entre 3 et 8.5 nm. Les différents lavages effectués~ afin d'éliminer le tensioactif par précipitations-dispersions successives, permettent d'obtenir des oxydes de métaux (Ti02, Zr02) de surface spécifique élevée, comparée à celle des matériaux conventionnels. Après calcination du rnatériau nanocomposite, l'agglomération (cohésion entre les nanoparticules) des nanoparticules crée une mésoporosité interparticulaire rigide pennettant l'accès à la surface active métallique, et assurant la formation de l'interface métal-oxyde métallique. Les deux nanocomposites à base d'or et de cuivre présentent une activité catalytique supérieure à celle du catalyseur comlnercial. Le nanocomposite à base d'or est plus performant que celui à base de cuivre.
5

Études thermodynamique et spectroscopique des sites d'adsorption des ions Cu₂ déposés sur silice

Bouchard, Isabelle 27 November 2018 (has links)
La préparation de catalyseurs bimétalliques supportés sur oxyde est délicate si l'on veut obtenir après activation des particules de taille homogène et contenant toutes l'alliage désiré. Le couple Ni-Cu présente une difficulté intéressante due à la ségrégation des métaux à l'état oxydé par formation d'hydroxydes ou de silicates. Pour contourner la difficulté, ces métaux ont été complexés avec un ligand polydentate, l'éthylènediamine. L'étude porte sur le contrôle de la nature du dépôt de ces métaux sur silice en fonction des conditions de préparation (température, pH, teneur). Les spectroscopies UV-visible et RPE sont utilisées pour caractériser les sites d'adsorption. Une étude thermodynamique des réactions d'adsorption permet de mieux comprendre l'interaction des complexes avec la surface. Bien que l'adsorption du complexe du cuivre soit plus forte que celle du nickel, l'adsorption simultanée révèle qu'il y a compétition des deux métaux pour les mêmes sites. / Québec Université Laval, Bibliothèque 2018
6

Mesoporous catalysts for ammoxidation of acrolein to acrylonitrile

Nguyen, Thanh-Binh 23 May 2018 (has links)
L’acrylonitrile est une matière première importaite de l’industrie des polymères, produite à grande échelle à partir de matériaux d’origine fossile. Les tendances de recherche actuelles pour une industrie chimique plus écologique favorisent l’utilisation de molécules plateformes d’origine biologique telles que le glycérol. De plus, la conception de catalyseurs est un élément essentiel pour développer ces produits. Les catalyseurs hétérogènes, en particulier les catalyseurs à base d’oxydes métalliques mésoporeux jouent un rôle majeur dans l’industrie pétrochimique. Par conséquent, l’objectif de cette thèse est de développer des catalyseurs nouveaux, efficaces et utiles, à base d’oxydes métalliques mixtes pour l’ammoxydation de l’acroléine ex-glycérol en acrylonitrile. Sur la base des catalyseurs traditionnels pour l’ammoxydation du propène/propane en acrylonitrile, une série de catalyseurs à base de molybdates et d’antimonates supportés sur une silice mésoporeuse a été développée. Tout d’abord, les molybdates de bismuth ont été supportés sur la silice mésoporeuse KIT-6 en utilisant une méthode de gabarit solide (hard template). Différentes phases de molybdates de bismuth ont été synthétisées, caractérisées et testées pour l’ammoxydation de l’acroléine en acrylonitrile. Les conditions réactionnelles ont été soigneusement optimisées à différentes températures, débits et rapports molaires de réactifs. Les catalyseurs obtenus ont montré une bonne activité catalytique, une sélectivité et une stabilité, en particulier les échantillons contenant des phases mixtes de molybdates de bismuth. Deuxièmement, une série de mélanges de molybdates et d’antimonates supportés sur une silice mésoporeuse à l’aide d’une méthode de gabarit flexible (soft-template) a également été étudiée. Cette nouvelle méthode de soft template a été développée en utilisant la technique d’auto-assemblage induite par évaporation (EISA) et de tensioactifs comme agents structurants. Les catalyseurs obtenus présentaient une surface spécifique élevée et un grand volume de pores. De plus, les résultats catalytiques indiquent que les molybdates mixtes jouent un rôle majeur dans l’ammoxydation de l’acroléine. Certains des catalyseurs ont été choisis pour étudier le mécanisme de réaction de l’ammoxydation de l’acroléine en acrylonitrile. Parce que l’oxygène (l’air) et l’ammoniac sont des réactifs dans ce procédé, les effets des lacunes d’oxygène et de la réduction par l’ammoniac sur l’activité catalytique ont ensuite été étudiés. Les résultats obtenus ont démontré que les catalyseurs ayant plus de lacunes d’oxygène et qui étaient facilement réduits par l’ammoniac présentaient une activité catalytique plus élevée. Tous les catalyseurs contenant des molybdates ont montré une bonne activité catalytique et une bonne sélectivité pour l’ammoxydation de l’acroléine. Ainsi, un nouveau mécanisme de réaction a été proposé pour l’ammoxydation de l’acroléine sur les catalyseurs à base de molybdates. / Acrylonitrile is a raw material in polymer industry with a large scale demand and it has been produced from fossil origin. Current research trends for a greener chemical industry are promoted by using platform molecules of biological origin such as glycerol. Designing catalysts becomes an essential part to develop these products. Heterogeneous catalysts, especially mesoporous metal oxide catalysts, play a major role in petrochemical industry. Therefore, the scope of this thesis is to develop new, effective and useful mesoporous catalysts for ammoxidation of ex-glycerol acrolein to acrylonitrile. Based on the traditional catalysts for propene/propane ammoxidation to acrylonitrile, a series of molybdates and antimonates based catalysts supported in mesoporous silica was developed. First, bismuth molybdate oxides were supported in mesoporous silica KIT-6 using the hard-templating method. Different phases of bismuth molybdates were synthesized, characterized and tested for ammoxidation of acrolein to acrylonitrile. The reaction conditions were carefully optimized at different temperatures, flow rates and reactant ratios. The obtained catalysts showed good catalytic activity, selectivity and stability, especially, the samples containing mixed phases of bismuth molybdates. Second, a series of molybdate and antimonate mixtures supported on mesoporous silica using a soft-templating method was also studied. This new soft-templating method was developed based on the evaporation induced self-assembly (EISA) technique and dual surfactants as structure directing agents. The obtained catalysts exhibited high specific surface area and large pore volume. In addition, the catalytic results indicated that molybdates in mixture state play a major role in acrolein ammoxidation. Some of the above catalysts were chosen to study the reaction mechanism of acrolein ammoxidation to acrylonitrile. Because oxygen (air) and ammonia are reactants in this process, the effects of oxygen vacancies and ammonia reduction on catalytic activity were then investigated. The obtained results demonstrated that the catalysts having more oxygen vacancies and being readily reduced by ammonia showed higher catalytic activity. All catalysts containing molybdates showed good catalytic activity and selectivity for acrolein ammoxidation. Thus, a new reaction mechanism was proposed over molybdates oxides as catalysts.
7

Nanostructured catalysts for the development of the hydrogen economy

Hoang, Yen 24 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l'environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l'énergie. L'objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d'examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l'hydrogène. Dans un premier temps, une série d'oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d'hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l'oxydation sélective du CO en CO2. Concernant la question du stockage d'hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d'hydrogène à partir de l'ammoniaborane (aussi appelé borazane). L'activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d'imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l'hydrolyse du borazane et la décomposition de l'hydrazine aqueuse pour la production d'hydrogène. Il a été démontré qu'un catalyseur optimal peut être obtenu par le contrôle de l'effet bi-métallique, l'interaction métal-support, et la taille des particules de métal. / Catalysis plays an essential role in many industrial applications such as petrochemical and biochemical industries, as well as in the production of polymers and in environmental protection. Design and fabrication of efficient catalysts in a cost-effective way is an important milestone to address a number of unresolved issues in the new generation of chemical and energy conversion technologies. The objective of the studies in this thesis is the development of facile synthetic routes to prepare efficient catalysts based on non-noble metals, and elucidate fundamental aspects regarding the relationship between structure/composition and catalytic performance, in particular in the case of processes related to production and storage of hydrogen fuel. At first, a series of nanostructured porous mixed metal oxides (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) have been synthesized via an improved nanocasting method. The porous structure of the nanocast products was tailored by tuning the mesostructure of the mesoporous silica phases used as templates. The obtained Cu/CeO2 materials with controlled composition and porous structure were then tested in preferential oxidation of CO in a hydrogen stream to achieve high purity hydrogen fuel. The synthesized catalysts exhibit high activity and selectivity in selective oxidation of CO to CO2. Regarding hydrogen storage, we reported a cost-effective synthetic way towards bi-component CuO-NiO catalyst showing excellent catalytic performance, which is comparable to noble metal catalysts, in the hydrogen generation from ammonia-borane. Moreover, we demonstrate that the interaction between Cu and Ni species is essential in accelerating hydrogen evolution of ammonia borane. The catalytic activity of the obtained catalyst investigated in this reaction is strongly influenced by the nature of the metal precursors, the composition and the thermal treatment temperature employed for the catalyst preparation. Finally, silica- and carbon-supported Cu-Ni nanocatalysts, with tunable composition and metal particle size, were synthesized by simple incipient wetness method. The carbon supported catalysts are stable, highly active and selective in both ammonia-borane hydrolysis and the decomposition of hydrous hydrazine for hydrogen evolution. We showed that optimal catalysts can be achieved through manipulation of bimetallic effect, metal-support interaction, and adequate metal particle size.
8

Elaboration de matériaux céramiques poreux à base de SiC pour la filtration et la dépollution / Elaboration of SiC base porous ceramic materials for filtration gas clean-up

Sandra, Fabien 15 January 2014 (has links)
En 1920, le moteur Diesel marque l'histoire en se faisant une place dans le milieu de l'automobile. Toutefois, malgré la révolution que représente le moteur Diesel notamment en terme de technologie (moteur à combustion interne dont l'allumage n'est pas commandé mais spontané par phénomène d'auto-inflammation (absence de bougie d'allumage)), des inconvénients majeurs subsistent, tout particulièrement au niveau environnemental et sanitaire (émission de gaz à effet de serre, prélèvement accru d'énergie fossile, impact direct sur la santé). Afin de lutter contre ces émissions, l'Union Européen à mit en place les normes EURO (depuis 1993) incitant les constructeurs automobiles à concevoir des procédés d'élimination des particules carbonées et à apporter des évolutions au niveau des motorisations. C'est dans ce contexte qu'a vu le jour la technologie Filtre à Particules initié par Peugeot en 1999 pour évoluer d'années en années jusqu'à être considérées aujourd'hui comme une avancée majeur en terme de traitement des particules Diesel. Encore aujourd'hui les problèmes d'émanations demeurent en raison des imbrûlés générés par le moteur diesel (suies, HC aromatiques polycycliques, d'oxyde de soufre, d'oxyde d'azote…). Les dégagements de particules de suies fines demeurant un problème particulièrement important au niveau de la santé. Cette thèse s'inscrit dans l'optique d'optimisation du procédé FàP en proposant l'élaboration de membrane à base de SiC supportée. Plus généralement, notre étude concerne l'élaboration de céramiques poreuses (membranes supportées et mousses) à base de silicium pour application environnementale et sanitaire (Filtration des particules fines, dépollution et séquestration de CO2).Le Chapitre I traite du contexte général de l'étude. La problématique des émissions de particules est abordée d'un point de vue sanitaire et environnemental en précisant les normes en vigueurs pour leur contrôle. La technologie FàP est décrite avant d'introduire le SiC et la voie dite des « polymères précéramiques » (PDCs). L'aspect catalytique est ensuite abordé avant de développer le principe d'élaboration de membrane SiC et leur intérêt pour une application de dépollution automobile.Le Chapitre II traite de l'élaboration de membranes SiC supportées. L'étude concerne l'élaboration d'un procédé optimale pour déposer une membrane au sein de la porosité du FàP qui modifierait les caractéristiques de porosité de ce dernier sans pour autant engendrer des répercussions néfastes sur la filtration. Le polymère précéramique, précurseur de SiC, sera alors décrit et nous étudierons sa mise en forme par la technique dite de « trempage-tirage » (dip-coating) afin d'élaborer, après pyrolyse, une membrane SiC. Cette dernière sera caractérisée par de nombreux outils expérimentaux.Le Chapitre III reprend le procédé d'élaboration des membranes de SiC élaboré dans le Chapitre II mais il proposera d'aller plus loin avec la réalisation et l'étude de catalyseurs pour la combustion des suies, et leur intégration au sein d'une microémulsion de type SiC-MxOy utilisée pour revêtir les FàP.Le Chapitre IV propose une étude sur la préparation de mousses à base de SiC. Ce chapitre d'aspect plus fondamental consistera à développer des mousses cellulaires et à porosité hiérarchisée à base des éléments silicium (Si), bore (B), carbone (C) et azote (N). Cette phase de carbonitrure de silicium et de bore (Si/B/C/N) sera élaborée par couplage de la voie PDCs avec soit des agents sacrificiels soit par réplication. Une étude préliminaire sur la séquestration de CO2 sera alors décrite pour finir. / Since the 90's, Diesel engines are widely used though they are criticized because of the pollution emitted. The constant updates of the Europeans norms (since 1993) concerning the diesel emissions imply a perpetual improvement of filtration techniques. The Diesel Particles Filter (DPF) technology used by the car manufacturer PSA Peugeot Citroën is one of the best ways to fulfill the limitation for diesel emissions. However, particles emission issue is still a problem and future legislations more and stricter, so an improvement of the DPF process is required to respect them. In this context, we have considered the elaboration of two different types of porous membranes on the DPF channels. The first one was in SiC, and had the aim to enhance the filtration efficiency. In this way, the smallest particles matter could be locked in the filter. The second kind of membrane integrates a catalytic phase inside the ceramic matrix, so in addition to the filtration aspect, it could improve soot combustion during the regeneration step of the DPF.The first chapter of my thesis deals with the literature corresponding to the subject, i.e. the DPF technology, non-oxides Si-based ceramics, and in particular those obtained through polymer-derived ceramics route (also called PDCs route). Then, ceramic coatings and catalytic phases are also treated. In the second chapter, we have considered the PDCs route and preceramic polymers to elaborate a SiC coating inside the DPF channels. We employed the dip-coating technique to overlay the channel surface with the AHPCS precursor of SiC (allylhydridopolycarbosilane), then, a pyrolysis under argon allows obtaining a SiC coating, in order to decrease the average pore diameter of the DPF (keeping an efficient filtration while avoiding overpressure) to catch soot nanoparticles evolving from Diesel engine.The third part of my PhD deals with the elaboration of another kind of coating for the DPF channels including a catalytic phase in the ceramic membrane. For this purpose, the microemulsion synthesis has been considered to prepare SiC-MxOy membrane. Further, we incorporated various catalytic phases based on Ce, Fe and Pt as activators of soot combustion. By employing the dip-coating technique, we successfully covered the DPF channels of our monoliths with the aforementioned microemulsion and after a heat treatment under controlled atmosphere; a porous coating consisting of the catalytic phase and the ceramic matrix was obtained. From this film, the porosity has been modified by lowering the diameter of the initial pores, but also by getting an additional porosity due to the polymer conversion and the surfactant decomposition. Catalytic sites in the ceramic have improved the soot combustion by lowering the temperature of the combustion.The fourth chapter introduces the elaboration of porous SiBCN materials through two approaches, replication and warm-pressing with sacrificial template (polymethylmethacrylate, PMMA). The SiBCN ceramic is a promising material due to its high mechanical properties and its stability at high temperature (1700-1800°C). By coupling the PDCs way with those two techniques, we are able to elaborate SiBCN porous materials which features can be tuned according to the technological application envisaged.
9

Linear energy relations for biomass transformation under heterogeneous catalysis : a fast prediction of polyalcohol dehydrogenation on transition metals / Relations d'énergie linéaires pour la transformation de la biomasse en catalyse hétérogène : Une méthode de prédiction rapide de la déshydrogénation des polyalcools sur les métaux de transition

Zaffran, Jérémie 30 April 2014 (has links)
La valorisation de la biomasse est une alternative intéressante aux ressources fossiles, et s'effectue fréquemment en catalyse hétérogène. L'élaboration de nouveaux catalyseurs est une tâche ardue qui peut être considérablement accélérée in silico. Cependant les molécules de la biomasse sont souvent complexes et hautement oxygénées, rendant ainsi les calculs plus difficiles et couteux en temps. Parmi ces composés, les polyols sont particulièrement importants. Nous avons développé des relations du type Brønsted-Evans-Polanyi (BEP) à partir d'une étude DFT menée sur une famille de monoalcools concernant les dissociations des liaisons C-H et O-H sur des catalyseurs métalliques (Co, Ni, Ru, Rh, Pd, Ir, Pt). Ces relations ont pour but de prédire l’énergie d’activation d’une étape élémentaire à partir de son énergie de réaction. La précision obtenue par ces modèles linéaires est supérieure à 0.10 eV pour l'échantillon considéré. Ces relations ont ensuite étaient appliquées aux étapes élémentaires de la déshydrogénation du glycérol, choisi comme polyol prototype. On observe une erreur moyenne inférieure à 0.10 eV et une erreur systématique de l'ordre de ± 0.10 eV sur Rh. Etant donné que la principale différence entre les monoalcools et le glycérol, vient des liaisons H intramoléculaires présentes dans celui-ci, nous avons mis en place des relations linéaires pour prédire la déshydrogénation des monoalcools assistée par l'eau. Ces nouvelles relations nous ont permis d'améliorer la prédiction sur le glycérol et même d'éliminer la déviation systématique dans le cas de la rupture de la liaison OH. Même si dans cette étude nous nous sommes focalisés sur la déshydrogénation du glycérol, des méthodes similaires pourraient être appliquées à d'autres polyols avec d'autres réactions chimiques, accélérant ainsi considérablement la recherche in silico de catalyseurs solides. Ce travail pave la route pour le développement de nouvelles techniques numériques pour aborder la question de la conversion de la biomasse. / Biomass valorization is an interesting alternative to fossil resources, which is frequently performed via heterogeneous catalysis. Designing new catalysts is a challenging task that can be significantly accelerated in silico. However, biomass molecules are often complex and highly oxygenated, hence rendering calculations more difficult and time consuming. Among these compounds, polyols are particularly important. We developed linear relations of the Brønsted-Evans-Polanyi (BEP) type from the DFT study of C-H or O-H bond dissociation elementary steps for a family of monoalcohol molecules on metallic catalysts (Co, Ni, Ru, Rh, Pd, Ir, Pt). Such relations aim at predicting activation energies from reaction energies. The accuracy of the obtained linear energy models is better than 0.10 eV on the sampling set. Then, the relations were applied for the prediction of the dehydrogenation elementary steps of glycerol, chosen as a prototype of polyalcohols, with an accuracy better than 0.10 eV and with a systematic error around ±0.10 eV for Rh. Keeping in mind that the main difference between glycerol and monoalcohols comes from intramolecular H-bonds present in the former, we designed linear relations for water-assisted dehydrogenation of monoalcohols. These new relations allowed us to improve the prediction on glycerol and to eliminate the systematic deviation in the case of OH bond breaking. Even if in this study we focused on glycerol dehydrogenation, similar methods may be applied to other polyols with other chemical reactions, and considerably speed up the computational design of solid catalysts. This work paves the way for the development of novel numerical techniques to address the issue of biomass conversion.
10

Hydrogénation des huiles végétales en présence de catalyseurs bimétalliques à base de Pd et monométalliques à base de Pd doppé au soufre et supportés sur une silice mésoporeuse

Kemache, Nassima 17 April 2018 (has links)
L'hydrogénation de l'huile de tournesol en présence de catalyseurs bimétalliques Pd-Me/SBA-15 (Me = Ru, Ni, Sr, Co et Mo) a montré que l'ajout d'un deuxième métal a une grande influence sur l'activité et la sélectivité de Pd. En effet, l'activité de Pd augmentait avec l'ajout de Co, Sr et légèrement avec le Ru, alors qu'elle diminuait avec l'ajout de Ni et de Mo. Fait intéressant, l'ajout de Ru n'a pas seulement promu l'activité, mais il a également inhibé la formation des isomères trans en ayant une grande sélectivité envers les rà-monoènes. D'autre part, le catalyseur dopé au soufre 0.7%Pd-0.3%/SBA-15 a montré une activité satisfaisante et légèrement supérieure à celle de Pd seul. Toutefois, une légère augmentation des teneurs en C18 :0 et C18 :1 trans a été observée à la fin de réaction, formant ainsi une huile plus solide. Néanmoins, ce catalyseur était le plus stable en présence de quelques ppm de S dans l'huile de tournesol. Par conséquent, ce catalyseur a été choisi pour l'optimisation des conditions opératoires lors de l'hydrogénation des huiles de canola et de tournesol. La comparaison entre les deux huiles a mis en évidence l'influence de la composition initiale en acides gras sur la qualité des produits hydrogénés. La détermination des modules Weisz-Prater de l'hydrogène et de l'huile végétale a mis en évidence l'existence des limitations au transfert d'H₂, contrôlant ainsi par diffusion les teneurs en acides gras trans.

Page generated in 0.0998 seconds