• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 1
  • Tagged with
  • 25
  • 25
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An experimental examination of the effect of trailing edge thickness on the aerodynamic performance of gas turbine blades

Zeidan, Omar January 1989 (has links)
This thesis documents the experimental research conducted on a transonic turbine cascade. The cascade was a two-dimensional model of a jet-engine turbine with an, approximately, 1.2 design, exit Mach number, and was tested in a blow-down type wind-tunnel. The primary goal of the research was to examine the effect of trailing edge thickness on aerodynamic losses. The original cascade was tested and, then, the blades were cut-back at the trailing edge to make the trailing edge thicker. The ratios of the trailing edge thickness to axial chord length for the two cascades were 1.27 and 2.00 percent; therefore, the ratio of the two trailing edge thicknesses was 1.57. To simulate the blade cooling method that involves trailing edge coolant ejection, and to examine the effect of that on aerodynamic losses, CO₂ was ejected from slots near the trailing edge in the direction of the flow. Two different blowing rates were used, in addition to tests without CO₂. A coefficient, L̅, was used to quantify aerodynamic losses, and this was the mass-averaged total pressure drop, normalized by dividing with the total pressure upstream of the cascade. The traversing, downstream total pressure probe was stationed at one of three different locations, in order to investigate the loss development downstream of the cascade. The two cascades were tested for an exit Mach number ranging from 0.60 to 1.36. The research suggested that the main influence of the trailing edge thickness on losses is through affecting the strength of the trailing edge shock system, since L̅ was almost the same for the two cascades in the subsonic Mach number region. The losses mainly differed (larger for the cut-back cascade) in the Mach number region of 1.0 to 1.2. In this region, the difference in loss maximized, showing a loss for the cut-back cascade 20 to 30 percent more than the original cascade. The CO₂ was found to have no significant effect for high Mach numbers; for low Mach numbers, the high blowing rate slightly decreased the loss. Finally, the loss, nearly, stopped to increase after one axial chord length downstream of the cascade. / Master of Science
12

Optimization of a low speed wind turbine using support vector regression

Wise, John Nathaniel 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2009. / NUMERICAL design optimization provides a powerful tool that assists designers in improving their products. Design optimization automatically modifies important design parameters to obtain the best product that satisfies all the design requirements. This thesis explores the use of Support Vector Regression (SVR) and demonstrates its usefulness in the numerical optimization of a low-speed wind turbine for the power coe cient, Cp. The optimization design problem is the three-dimensional optimization of a wind turbine blade by making use of four two-dimensional radial stations. The candidate airfoils at these stations are selected from the 4-digit NACA range. A metamodel of the lift and drag coe cients of the NACA 4-digit series is created with SVR by using training points evaluated with XFOIL software. These SVR approximations are used in conjunction with the Blade Element Momentum theory to calculate and optimize the Cp value for the entire blade. The high accuracy attained with the SVR metamodels makes it a viable alternative to using XFOIL directly, as it has the advantages of being faster and easier to couple with the optimizer. The technique developed allows the optimization procedure the freedom to select profiles, angles of attack and chord length from the 4-digit NACA series to find an optimal Cp value. As a result of every radial blade station consisting of a NACA 4-digit series, the same lift and drag metamodels are used for each station. This technique also makes it simple to evaluate the entire blade as one set of design variables. The thesis contains a detailed description of the design and optimization problem, the implementation of the SVR algorithm, the creation of the lift and drag metamodels with SVR and an alternative methodology, the BEM theory and a summary of the results.
13

Simulation and modeling of flow field around a horizontal axis wind turbine (HAWT) using RANS method

Unknown Date (has links)
The principal objective of the proposed CFD analysis is to investigate the flow field around a horizontal axis wind turbine rotor and calculate the turbine's power. A full three dimensional computational fluid dynamics method based on Reynolds Averaged Navier Stokes approach was used in this study. The wind turbine has three blades and a rotor diameter of six meters. One third of the wind turbine rotor was modeled by means of 120o periodicity in a moving reference frame system. The power coefficient curve obtained from the CFD results is compared with experimental data obtained by NREL Phase VI rotor experiment. The numerical result for the power coefficient curve shows close agreement with the experimental data. The simulation results include the velocity distribution, pressure distribution along the flow direction, turbulent wake behind the wind turbine, and the turbine's power. The discussion will also include the effect of wind speed on turbine's power. / by Armen Sargsyan. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
14

The development of a segmented variable pitch small horizontal axis wind turbine with active pitch control

Poole, Sean January 2013 (has links)
Small scale wind turbines operating in an urban environment produce dismal amounts of power when compared to their expected output [1-4]. This is largely due to the gusty wind conditions found in an urban environment, coupled with the fact that the wind turbines are not designed for these conditions. A new concept of a Segmented Variable Pitch (SVP) wind turbine has been proposed, which has a strong possibility to perform well in gusty and variable wind conditions. This dissertation explains the concept of a SVP wind turbine in more detail and shows analytical and experimental results relating to this concept. Also, the potential benefits of the proposed concept are mentioned. The results from this dissertation show that this concept has potential with promising results on possible turbine blade aerofoil configurations. Scaled model tests were completed and although further design optimisation is required, the tests showed good potential for the SVP concept. Lastly a proof-of-concept full scale model was manufactured and tested to prove scalability to full size from concept models. Along with the proof-of-concept full scale model, a wireless control system (to control the blade segments) was developed and tested.
15

Wake Character in the Wind Turbine Array: (Dis-)Organization, Spatial and Dynamic Evolution and Low-dimensional Modeling

Hamilton, Nicholas Michael 06 July 2016 (has links)
To maximize the effectiveness of the rapidly increasing capacity of installed wind energy resources, new models must be developed that are capable of more nuanced control of each wind turbine so that each device is more responsive to inflow events. Models used to plan wind turbine arrays and control behavior of devices within the farm currently make questionable estimates of the incoming atmospheric flow and update turbine configurations infrequently. As a result, wind turbines often operate at diminished capacities, especially in arrays where wind turbine wakes interact and inflow conditions are far from ideal. New turbine control and wake prediction models must be developed to tune individual devices and make accurate power predictions. To that end, wind tunnel experiments are conducted detailing the turbulent flow in the wake of a wind turbine in a model-scale array. The proper orthogonal decomposition (POD) is applied to characterize the spatial evolution of structures in the wake. Mode bases from distinct downstream locations are reconciled through a secondary decomposition, called double proper orthogonal decomposition (DPOD), indicating that modes of common rank in the wake share an ordered set of sub-modal projections whose organization delineates underlying wake structures and spatial evolution. The doubly truncated basis of sub-modal structures represents a reduction to 0.015% of the total degrees of freedom of the wind turbine wake. Low-order representations of the Reynolds stress tensor are made using only the most dominant DPOD modes, corrected to account for energy excluded from the truncated basis with a tensor of constant coefficients defined to rescale the low-order representation of the stresses to match the original statistics. Data from the wind turbine wake are contrasted against simulation data from a fully-developed channel flow, illuminating a range of anisotropic states of turbulence. Complexity of flow descriptions resulting from truncated POD bases is suppressed in severe basis truncations, exaggerating anisotropy of the modeled flow and, in extreme cases, can lead to the loss of three dimensionality. Constant corrections to the low-order descriptions of the Reynolds stress tensor reduce the root-mean-square error between low-order descriptions of the flow and the full statistics as much as 40% and, in some cases, reintroduce three-dimensionality to severe truncations of POD bases. Low-dimensional models are constructed by coupling the evolution of the dynamic mode coefficients through their respective time derivatives and successfully account for non-linear mode interaction. Deviation between time derivatives of mode coefficients and their least-squares fit is amplified in numerical integration of the system, leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time and using a virtual sensor upstream of the wind turbine actuator disk in to read the effective inflow velocity. A series of open-loop transfer functions are designed to inform the low-order dynamical system of the flow incident to the wind turbine rotor. Validation data shows that the model tuned to the inflow reproduces dynamic mode coefficients with little to no error given a sufficiently small interval between instances of recalibration. The reduced-order model makes accurate predictions of the wake when informed of turbulent inflow events. The modeling scheme represents a viable path for continuous time feedback and control that may be used to selectively tune a wind turbine in the effort to maximize power output of large wind farms.
16

Optimisation of a mini horizontal axis wind turbine to increase energy yield during short duration wind variations

Poole, Sean Nichola January 2017 (has links)
The typical methodology for analytically designing a wind turbine blade is by means of blade element momentum (BEM) theory, whereby the aerofoil angle of attack is optimized to achieve a maximum lift-to-drag ratio. This research aims to show that an alternative optimisation methodology could yield better results, especially in gusty and turbulent wind conditions. This alternative method looks at increasing the aerofoil Reynolds number by increasing the aerofoil chord length. The increased Reynolds number generally increases the e_ectiveness of the aerofoil which would result in a higher or similar lift-to-drag ratio (even at the decreased angle of attacked require to maintain the turbine thrust coe_cient). The bene_t of this design is a atter power curve which causes the turbine to be less sensitive to uctuating winds. Also, the turbine has more torque at startup, allowing for operatation in lower wind speeds. This research is assumed to only be applicable to small wind turbines which operated in a low Reynolds number regime (<500 000), where Reynolds number manipulation is most advantageous.
17

Design and experimental evaluation of a dynamic thermal distortion generator for turbomachinery research

DiPietro, Anthony Louis 29 September 2009 (has links)
This thesis involves the design and experimental evaluation of a dynamic thermal distortion generator for turbomachinery research. The detailed design of a thermal distortion generator, its individual components, and its associated hardware was performed. Details of the preliminary design concepts and also the combustion test cell are discussed. Instruments and controls were developed and installed to regulate the distortion generator’s operation and to obtain data. The complete geometry of the thermal distortion generator and the layout of the combustion test cell was established. Operating and safety procedures were also established. A set of experiments was conducted to confirm the operation of the thermal distortion generator and to obtain experimental data. This data was used to visualize the dynamics of the thermal distortions produced and to show the temperature ramps produced by the generator. This data was used to verify that the distortion generator operated correctly and met all of the design constraints and requirements set forth. / Master of Science
18

Measurements of pressure and thermal wakes in a transonic turbine cascade

Mezynski, Alexis 11 June 2009 (has links)
The effects of freestream turbulence on the total pressure and total temperature in the wake of a cooled transonic turbine cascade with heated flow are presented in this thesis. The experiment was conducted in the Virginia Tech Cascade Wind Tunnel. A dual hot wire aspirating probe was used to make high frequency, unsteady total pressure and temperature measurements. The probe design was modified to be used in a high temperature environment. The flow was heated to temperatures exceeding 140°C and the turbine blades were actively cooled using gaseous nitrogen to maintain a gas to blade temperature ratio between 1.3 and 1.4. A turbulence screen was used to change the freestream turbulence from 3.3% to 7.5%. Mean and turbulent total pressure and temperature quantities are presented. The higher freestream turbulence resulted in lower total pressure and total temperature turbulence intensities in the wakes of the turbine blades. The freestream turbulence level had no measurable effect on the blade losses. / Master of Science
19

Reynolds stress measurements downstream of a turbine cascade

Shaffer, Damon M. 15 November 2013 (has links)
An experimental investigation was performed to measure Reynolds stresses in the turbulent flow downstream of a large-scale linear turbine cascade. A rotatable X-wire hot-wire probe that allows redundant data to be taken with solution for mean velocities and turbulence quantities by least-squares fitting procedures was developed. This measurement technique was verified in a fully-developed turbulent pipe flow; the results show the accuracy of the probe when used in an end-flow orientation at various incidence angles and with a multiple number of angular settings. Traverses with a single hot-wire at mid-span near the blade row exit show very high levels of turbulence locally in the blade wake near the trailing edge which quickly lessen in magnitude downstream. The rotatable X-wire was used to obtain the Reynolds stresses on a measurement plane located 10% of an axial chord downstream of the trailing edge. Here the turbulence kinetic energy exhibits a distribution resembling the contours of total pressure loss obtained previously, but is highest in the blade wake where losses are relatively low. The turbulent shear stresses obtained are consistent in sign and magnitude with the gradients of mean velocity. The mass-averaged turbulence kinetic energy accounts for 21% of the total pressure loss at this measurement plane. / Master of Science
20

Evaluation and performance prediction of a wind turbine blade

Pierce, Warrick Tait 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2009. / The aerodynamic performance of an existing wind turbine blade optimised for low wind speed conditions is investigated. The aerodynamic characteristics of four span locations are determined from surface pressure measurements and wake surveys with a traversed five-hole probe performed in a low speed wind tunnel for chord Reynolds numbers ranging from 360,000 - 640,000. Two-dimensional modelling of the wind tunnel tests is performed with the commercial computational fluid dynamics code FLUENT. The predictive accuracies of five eddy-viscosity turbulence models are compared. The computational results are compared to each other and experimental data. It is found that agreement between computational and experimental results varies with turbulence model. For lower Reynolds numbers, the Transitional-SST turbulence model accurately predicted the presence of laminar separation bubbles and was found to be superior to the fully turbulent models considered. This highlighted the importance of transitional modelling at lower Reynolds numbers. With increasing angles of attack the bubbles were found to move towards the leading edge and decrease in length. This was validated with experimental data. For the tip blade section, computations implementing the k-ε realizable turbulence model best predicted experimental data. The two-dimensional panel method code, XFOIL, was found to be optimistic with significantly higher lift-to-drag ratios than measured. Three-dimensional modelling of the rotating wind turbine rotor is performed with the commercial computational fluid dynamics code NUMECA. The Coefficient of Power (Cp) predicted varies from 0.440 to 0.565 depending on the turbulence model. Sectional airfoil characteristics are extracted from these computations and compared to two-dimensional airfoil characteristics. Separation was found to be suppressed for the rotating case. A lower limit of 0.481 for Cp is proposed based on the experimental data. / Centre for Renewable and Sustainable Energy Studies

Page generated in 0.0616 seconds