Spelling suggestions: "subject:"turbines -- colades"" "subject:"turbines -- calades""
31 |
Investigation of the cooling characteristics of rotating liquidsWulc, Stanislaw S. January 1950 (has links)
In this paper, an analysis of the internal water-cooling of a gas turbine was carried out. The density differences due to heating of the water in the blade and drum, combined with the very large force field associated with the centrifugal force caused by the rotation of water, sets up strong convection currents, which resulted in a very efficient heat transfer.
Using the Havier-Stoke's and the continuity equations, applying Prandtl’s analogy between heat transfer and fluid friction and von Karman's - Nikuradse’s universal velocity distribution equation, the coefficient of heat transfer was derived and the maximum gas effective temperature predicted.
For the conditions used in this investigation the following enumerated results can be stated:
1) The computed coefficient of heat transfer between cooling passage wall and water is 3850 Btu/(hr)(sq ft) (°F).
2) The rate of coolant flow is 11.35 lb/sec.
3) The effective gas temperature is 2510°F, assuming no radial heat flow alone the metal parts.
4) The average blade temperature is 600°F.
5) The blade has one cooling passage 4" long and .25" in diameter, and one equivalent in half to it in the cooling effect. / Master of Science
|
32 |
An experimental examination of the effect of trailing edge thickness on the aerodynamic performance of gas turbine bladesZeidan, Omar January 1989 (has links)
This thesis documents the experimental research conducted on a transonic turbine cascade. The cascade was a two-dimensional model of a jet-engine turbine with an, approximately, 1.2 design, exit Mach number, and was tested in a blow-down type wind-tunnel. The primary goal of the research was to examine the effect of trailing edge thickness on aerodynamic losses. The original cascade was tested and, then, the blades were cut-back at the trailing edge to make the trailing edge thicker. The ratios of the trailing edge thickness to axial chord length for the two cascades were 1.27 and 2.00 percent; therefore, the ratio of the two trailing edge thicknesses was 1.57. To simulate the blade cooling method that involves trailing edge coolant ejection, and to examine the effect of that on aerodynamic losses, CO₂ was ejected from slots near the trailing edge in the direction of the flow. Two different blowing rates were used, in addition to tests without CO₂. A coefficient, L̅, was used to quantify aerodynamic losses, and this was the mass-averaged total pressure drop, normalized by dividing with the total pressure upstream of the cascade. The traversing, downstream total pressure probe was stationed at one of three different locations, in order to investigate the loss development downstream of the cascade. The two cascades were tested for an exit Mach number ranging from 0.60 to 1.36. The research suggested that the main influence of the trailing edge thickness on losses is through affecting the strength of the trailing edge shock system, since L̅ was almost the same for the two cascades in the subsonic Mach number region. The losses mainly differed (larger for the cut-back cascade) in the Mach number region of 1.0 to 1.2. In this region, the difference in loss maximized, showing a loss for the cut-back cascade 20 to 30 percent more than the original cascade. The CO₂ was found to have no significant effect for high Mach numbers; for low Mach numbers, the high blowing rate slightly decreased the loss. Finally, the loss, nearly, stopped to increase after one axial chord length downstream of the cascade. / Master of Science
|
33 |
Development of a Comprehensive Design Methodology and Fatigue Life Prediction of Composite Turbine Blades under Random Ocean Current LoadingUnknown Date (has links)
A comprehensive study was performed to overcome the design issues related to
Ocean Current Turbine (OCT) blades. Statistical ocean current models were developed in
terms of the probability density function, the vertical profile of mean velocity, and the
power spectral density. The models accounted for randomness in ocean currents, tidal
effect, and ocean depth. The proposed models gave a good prediction of the velocity
variations at the Florida Straits of the Gulf Stream.
A novel procedure was developed to couple Fluid-Structure Interaction (FSI) with
blade element momentum theory. The FSI effect was included by considering changes in
inflow velocity, lift and drag coefficients of blade elements. Geometric non-linearity was
also considered to account for large deflection. The proposed FSI analysis predicted a
power loss of 3.1 % due to large deflection of the OCT blade. The method contributed to
saving extensive computational cost and time compared to a CFD-based FSI analysis. The random ocean current loadings were calculated by considering the ocean
current turbulence, the wake flow behind the support structure, and the velocity shear. The
random ocean current loadings had large probability of high stress ratio. Fatigue tests of
GFRP coupons and composite sandwich panels under such random loading were
performed. Fatigue life increased by a power function for GFRP coupons and by a linearlog
function for composite sandwich panels as the mean velocity decreased. To accurately
predict the fatigue life, a new fatigue model based on the stiffness degradation was
proposed. Fatigue life of GFRP coupons was predicted using the proposed model, and a
comparison was made with experimental results.
As a summary, a set of new design procedures for OCT blades has been introduced
and verified with various case studies of experimental turbines. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
34 |
Evolution Of Microstructure And Residual Stress In Disc-shape Eb-pvd Thermal Barrier Coatings And Temperature Profile Of High Pressure Turbine BladeMukherjee, Sriparna 01 January 2011 (has links)
A detailed understanding of failure mechanisms in thermal barrier coatings (TBCs) can help develop reliable and durable TBCs for advanced gas turbine engines. One of the characteristics of failure in electron beam physical vapor deposited (EB-PVD) TBCs is the development of instability, named rumpling, at the interface between (Ni, Pt)Al bond coat and thermally grown oxide (TGO). In this study, thermal cycling at 1100°C with 1 hr dwell time was carried out on 25.4mm disc specimens of TBCs that consisted of EB-PVD coated ZrO2-7wt. %Y2O3, (Pt,Ni)Al bond coat, and CMSX-4 Ni-based superalloy. At specific fraction of lifetime, TBCs were examined by electron microscopy and photostimulated luminescence (PL). Changes in the average compressive residual stress of the TGO determined by PL and the magnitude of rumpling, determined by tortuosity from quantitative microstructural analyses, were examined with respect to the furnace thermal cyclic lifetime and microstructural evolution of TBCs. The combination of elastic strain energy within the TGO and interfacial energy at the interface between the TGO and the bond coat was defined as the TGO energy, and its variation with cyclic oxidation time was found to remain approximately constant ~135J/m2 during thermal cycling from 10% to 80% thermal cyclic lifetime. Parametric study at ~135J/m2 was performed and variation in residual stress with rumpling for different oxide scale thicknesses was examined. This study showed that the contribution of rumpling in residual stress relaxation decreased with an increase in TGO thickness. High pressure turbine blades serviced for 2843 hours and in the as coated form were also examined using electron microscopy and photostimulated luminescence. The difference in iv residual stress values obtained using PL on the suction and pressure sides of as-coated turbine blade were discussed. The presence of a thick layer of deposit on the serviced blade gave signals from stress free α-Al2O3 in the deposit, not from the TGO. The TGO growth constant data from the disc-shape TBCs, thermally cycled at 1100°C, and studies by other authors at different temperatures but on similar EB-PVD coated TBCs with (Pt, Ni)Al bond coat and CMSX-4 Nibased superalloy were used to determine the temperature profile at the YSZ/bond coat interface. The interfacial temperature profiles of the serviced blade and the YSZ thickness profile were compared to document the variable temperature exposure at the leading edge, trailing edge, suction and the pressure side.
|
35 |
Development of an integrated computational tool for design and analysis of composite turbine blades under ocean current loadingUnknown Date (has links)
A computational tool has been developed by integrating National Renewable Energy Laboratory (NREL) codes, Sandia National Laboratories' NuMAD, and ANSYS to investigate a horizontal axis composite ocean current turbine. The study focused on the design, analysis, and life prediction of composite blade considering random ocean current, cyclic rotation, and hurricane-driven ocean current. A structural model for a horizontal axis FAU research OCT blade was developed. Following NREL codes were used: PreCom, BModes, ModeShape, AeroDyn and FAST. PreComp was used to compute section properties of the OCT blade. BModes and ModeShape calculated the mode shapes of the blade. Hydrodynamic loading on the OCT blade was calculated by modifying the inputs to AeroDyn and FAST. These codes were then used to obtain the dynamic response of the blade, including blade tip displacement, normal force (FN) and tangential force (FT), flap and edge bending moment distribution with respect to blade rotation. / by Fang Zhou. / Thesis (Ph.D.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
36 |
Reliability-based fatigue design of marine current turbine rotor bladesUnknown Date (has links)
by Shaun Hurley. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web. / The study presents a reliability-based fatigue life prediction model for the ocean current turbine rotor blades. The numerically simulated bending moment ranges based on the measured current velocities off the Southeast coast line of Florida over a one month period are used to reflect the short-term distribution of the bending moment ranges for an idealized marine current turbine rotor blade. The 2-parameter Weibull distribution is used to fit the short-term distribution and then used to obtain the long-term distribution over the design life. The long-term distribution is then used to determine the number of cycles for any given bending moment range. The published laboratory test data in the form of an ε-N curve is used in conjunction with the long-term distribution of the bending moment ranges in the prediction of the fatigue failure of the rotor blade using Miner's rule. The first-order reliability method is used in order to determine the reliability index for a given section modulus over a given design life. The results of reliability analysis are then used to calibrate the partial safety factors for load and resistance.
|
37 |
Fluid mechanics and heat transfer in the blade channels of a water-cooled gas turbine.El-Masri, Maher Aziz January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Vita. / Includes bibliographical references. / Ph.D.
|
38 |
Optimisation and design of two micro-hydro turbines for medium and low head applications.Randelhoff, Julian. January 2000 (has links)
The necessity to develop an automated process for the design of micro-hydro power
systems was based on the increasing demand for hydropower as a renewable energy
source and to develop cost effective power supplies to rural areas. The application of the
formula for the design of these systems is then to simplify the selection of the turbine
sizing and is made possible by the similarity laws that exist within turbine and pump
families. in addition the sizing of the supply and exhaust piping is also a matter of
scaling. No selection process of turbine type is included due to the limitations of cost
effectiveness and the category of size into which the turbine was specified. Furthermore.
a new approach to turbine design was separately undertaken to satisfy low head and low
flow-rate conditions. However, it was only designed up to a cost analysis with no
manufacturing having been undertaken.
The axial flow turbine. which was most suited for micro-hydro was designed and built as
a prototype with a standardized mounting frame. The initial conditions used to generare
the velocity vectors and angles were specific to the installation site and used to
computationally generate the rotor and stator blades. This required an analysis of the
different profiles available as well as research into their design. Once the blade profile
stacking had been determined, this was translated into a software program that developed
the blades from site-specific initial conditions. However, the design of the blades was
interdependent on the dimensioning of the rest of the turbine components and designing
these in parallel proved to be an intricate task. With the design complete, the turbine was
then installed and testing proceeded with the use of pressure gauges and the results of
torque and rpm obtained from a dynamometer. Analysis of the results was undertaken
and presented in graphical format with comments on both the design and results. / Thesis (M.Sc.Eng.) -University of Natal, Durban, 2000.
|
39 |
Bayesian networks for uncertainty estimation in the response of dynamic structuresCalanni Fraccone, Giorgio M. January 2008 (has links)
Thesis (Ph.D.)--Aerospace Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Dr. Vitali Volovoi; Committee Co-Chair: Dr. Massimo Ruzzene; Committee Member: Dr. Andrew Makeev; Committee Member: Dr. Dewey Hodges; Committee Member: Dr. Peter Cento
|
40 |
Optimisation of a mini horizontal axis wind turbine to increase energy yield during short duration wind variationsPoole, Sean Nichola January 2017 (has links)
The typical methodology for analytically designing a wind turbine blade is by means of blade element momentum (BEM) theory, whereby the aerofoil angle of attack is optimized to achieve a maximum lift-to-drag ratio. This research aims to show that an alternative optimisation methodology could yield better results, especially in gusty and turbulent wind conditions. This alternative method looks at increasing the aerofoil Reynolds number by increasing the aerofoil chord length. The increased Reynolds number generally increases the e_ectiveness of the aerofoil which would result in a higher or similar lift-to-drag ratio (even at the decreased angle of attacked require to maintain the turbine thrust coe_cient). The bene_t of this design is a atter power curve which causes the turbine to be less sensitive to uctuating winds. Also, the turbine has more torque at startup, allowing for operatation in lower wind speeds. This research is assumed to only be applicable to small wind turbines which operated in a low Reynolds number regime (<500 000), where Reynolds number manipulation is most advantageous.
|
Page generated in 0.0599 seconds