• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the Wave Scattering From Turbulent Premixed Flame

Cho, Ju Hyeong 22 May 2006 (has links)
A theoretical investigation of acoustic wave interactions with turbulent premixed flames was performed. Such interactions affect the characteristic unsteadiness of combustion processes, e.g., combustion instabilities. The small perturbation method (SPM) was utilized to evaluate the scattered fields as a result of the flame-wave interaction at the instantaneous wrinkling surface of a randomly moving turbulent flame. Stochastic analysis of ensemble-averaged net acoustic energy was conducted to examine coherent and incoherent acoustic energy amplification /damping by the interaction. Net acoustic energy flux out of the flame is due to two factors: the acoustic velocity jump due to unsteady heat release from flame. The other is the flames unsteady motion. Five(5) dimensionless parameters that govern this net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, the ratio of flames diffusion time to flame fronts correlation time, and incidence angle. The dependence of net acoustic energy upon these dimensionless parameters was illustrated and discussed by numerical simulations in case of Gaussian statistics of flame front. The laminar flame response to equivalence ratio perturbations was also examined, showing that the overall heat release response is controlled by the superposition of three disturbances: heat of reaction, flame speed, and flame area. Heat of reaction disturbances dominate the flame response at low Strouhal numbers, roughly defined as (frequency x flame length)/(axial flow velocity). All three disturbances play equal roles at Strouhal numbers of O(1). In addition, the mean equivalence ratio exerts little effect upon this transfer function at low Strouhal numbers. At O(1) Strouhal numbers, the flame response increases with decreasing values of the mean equivalence ratio.
2

Effects of turbulent flow regimes on pilot and perforated-plate stabilized lean premixed flames

Jupyoung Kim (6845579) 14 August 2019 (has links)
An experimental study of the effects of turbulent flow regime on the flame structure is conducted by using perforated-plate-stabilized hydrogen-piloted lean premixed methane/air turbulent flames. The underlying non-reacting turbulent flow field was investigated using two-dimensional three-components particle imaging velocimetry (2D3C-PIV) with and without three perforated plates. The non-reacting flow data allowed a separation of the turbulent flow regime into axial velocity dominated and vortex dominated flows. A plate with 62\% blockage ratio was used to represent the stream-dominant flow regime and another with 86\% blockage ratio was used to represent the vortex-dominant flow regime. OH laser-induced fluorescence was used to study the effects of the turbulent flow regime on the mean progress variable, flame brush thickness, flame surface density, and global consumption speed. In comparison with the stream-dominant flow, the vortex-dominant flow makes a wider and shorter flame. Also, the vortex-dominant flow has a thicker horizontal flame brush thickness and a thinner longitudinal flame brush thickness. Especially, the horizontal flame brush thickness for the vortex-dominant flow does not follow the turbulence diffusion theory. Then, the vortex-dominant flow shows a relatively constant flame surface density along the stream-wise direction, while the stream-dominant flow shows a decreasing flame surface density. Lastly, the vortex-dominant turbulent flow improves the consumption speed in comparison to the stream-dominant turbulent flow regime with the same velocity fluctuation level.

Page generated in 0.0615 seconds