Spelling suggestions: "subject:"turbulent separation"" "subject:"burbulent separation""
1 |
Experimental Studies on the Effect of an Upstream Periodic Wake on a Turbulent Separation BubbleSuneesh, S S January 2016 (has links) (PDF)
The object of the present work is to experimentally study the case of a turbulent boundary layer subjected to an Adverse Pressure Gradient (APG) with separation and reattachment. The effect of unsteadiness on turbulent boundary layer separation by means two different methods were explored viz. the effect of local forcing by acoustic waves and effect of wakes on separation bubble.
The experiments were conducted in a low speed open circuit blower type wind tunnel. The turbulent separation bubble was created on the test plate by a contoured ceiling which created the adverse pressure gradient. The velocities were measured using single element hot wire and X-wire. Limited studies on quasi shear stress were also conducted using surface mounted hot film probes. Static pressure was measured using a projection manometer. Boundary layer is tripped near the leading edge of the flat plate to ensure a turbulent boundary layer. Surface pressure distribution and flow visualization were conducted as part of diagnostics.
In the case of laminar separation bubble, lot of investigations have been done on the effect of unsteady wake and the most important conclusion was that the wake induces `bypass' transition to turbulence and since the turbulent boundary layer is more resistant to separation, it remains attached. In the case of turbulent separation bubble, laminar-turbulent transition is not relevant and if the bubble is suppressed, it should be by some other mechanism. This is what we seek to unravel in this study.
A closer look at the mean velocity profiles reveal the occurrence of inflection point before separation as in the case of laminar separation bubble and the peak values of turbulence intensities correspond to the location of point of inflection. Turbulent separation correlations proposed by various investigators were compared with the present results and are found to be in good agreement. Surface flow visualization pictures are used to get qualitative information.
The wall forcing on the separation bubble was done using a speaker which blows a small amount of air when the diaphragm moves up and sucks in when the diaphragm moves down. The blowing effect seems to be more effective in suppressing the separation compared to suction.
The interaction with wake is studied using an unsteady bar which is moving up and down. The inflection point in the mean velocity distribution seems to move closer to the wall with the impingement o the wake. Also the turbulence intensities have increased and seem to move closer to the wall. The displacement and momentum thickness have increased and the shape factor has decreased which indicates suppression of the bubble. The quasi shear stress in the separated region also increased which indicates suppression of separation.
While the oncoming unsteady wake might be a parcel of fluid with defect velocity when seen in isolation, in comparison to the velocity defect in the separation bubble, it is a region of velocity excess. As a result, one can expect the impingement of the unsteady wake on the TSB to transport momentum thereby contributing to separation reduction. But the mechanism of separation is different from laminar separation bubble affected by wakes. The suppression in the case of turbulent separation bubble is partly due to the entrainment of turbulence and partly due to the kinematic impact of the wake on the bubble.
|
2 |
Caractérisation d’un décollement turbulent sur une rampe : entraînement et lois d’échelle / Characterisation of a turbulent separation over a ramp : entrainment and scaling lawsStella, Francesco 24 November 2017 (has links)
Les décollements turbulents massifs sont des phénomènes communs qui peuvent causer des pertes et de nuisances aérodynamiques importantes dans les écoulements industriels, par exemple à l’arrière d’une aile d’avion. Ce travail contribue à leur compréhension par l’analyse phénoménologique d’un décollement turbulent, représentatif d’un grand nombre d’écoulements réels. Le premier objectif est d’identifier les lois d’échelle des décollements turbulents, notamment en rapport avec les caractéristiques de l’écoulement à l’amont de la rampe. Un deuxième objectif est l’analyse, à grande et à petite échelle, des mécanismes de transport de fluide qui pilotent le fonctionnement des décollements. A cet effet, une approche originale est proposée, basée sur une description expérimentale et analytique de la couche cisaillée décollée et des interfaces turbulentes qui la délimitent. Nos résultats suggèrent que les lois d’échelle du décollement varient de façon complexe selon l’interaction de la couche limite à l’amont, de la couche cisaillée et de l’écoulement potentiel extérieur. La taille du décollement est liée à l’intensité de l’entraînement turbulent de masse dans la couche cisaillée, qui à son tour dépend de la turbulence dans la couche limite, bien à l’amont du point de décollement. Cette dépendance pourrait s’appliquer à toute la gamme d’échelles turbulentes responsables du transport de masse. Ces observations montrent clairement le rôle de la couche cisaillée dans le fonctionnement des décollements massifs et suggèrent la faisabilité de stratégies de contrôle nouvelles, de type retro-action ou prédictif, basée sur l’entrainement turbulent. / Massive turbulent separations are common phenomena that can cause sizeable aerodynamical losses and detrimental effects in industrial flows, for example on airplane wings. This work contributes to their understanding with a phenomenological analysis of a canonical turbulent separation, representative of a large number of real flows. The first objective is to identify the scaling laws of turbulent separations, in particular with respect to their dependencies on the characteristics of the flow upstream of the ramp. A second objective is the analysis, both at large and small scale, of the transfert mechanisms that drive the functioning of separated flows. To this end, a new approach is proposed, centered on the experimental and analytical description of the separated shear layer and of the turbulent interfaces that bound it. Our results suggest that the scaling laws of the separated flow vary in a complex way, in function of the interaction of the incoming boundary layer, the separated shear layer and the free-stream. The size of the separation is related to the intensity of turbulent mass entrainment within the shear layer, which in turn depends on the turbulence in the incoming boundary layer, well upstream of the separation point. This dependency might apply over the entire range of turbulent length scales that are responsible for mass transfer. These observations clearly show the role of the shear layer in the functioning of massive separation. They also suggest the feasibility of new control strategies, both of feedback and feed-forward type, based on turbulent entrainment.
|
Page generated in 0.1106 seconds