• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • Tagged with
  • 22
  • 22
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Social Structure and Mating Strategies of Bottlenose Dolphins (Tursiops truncatus) in the St. Johns River

Ermak, Jessica Lea 01 January 2014 (has links)
Across populations, bottlenose dolphins (Tursiops sp.) exhibit a fission-fusion pattern of associations, in which group size and composition change fluidly throughout the day. Beneath this seemingly ephemeral social structure, considerable variation exists across study sites. While females typically have moderate bonds with one another within a large social network, male-male bonds are variable, though males typically take one of two strategies; some males encounter females individually for opportunities to breed while others cooperate within a first-order alliance to collectively herd females. In addition, multi-tiered alliances in which two first-order alliances cooperate to defend or assist in the theft of a female have been documented within Shark Bay, Australia. However, these patterns do not apply to all study sites, as intersexual bonds are strong within several bottlenose dolphin populations. Given the variation in the presence and complexity of male alliances, greater documentation of social structure and male mating strategies across study sites is needed to draw conclusions as to the ultimate factors behind alliance formation. As such, chapter one documents the inclusion of a new study site in the St. Johns River (SJR) in Northeast Florida where males form first and second-order alliances. In addition, variables from the SJR are included within a meta-analysis in chapter two, the first systematic examination of what variables correlate with alliance presence and complexity, with the conclusion that male-male competition best describes the patterns seen in male alliance formation. Chapter three builds upon this conclusion by examining seasonal trends in tooth rake marks, a proxy for aggression, across the sexes and males of two different mating strategies, ultimately highlighting the potential for non-reproductive aggression. Together, this work provides greater insight as to the social structure and mating patterns of bottlenose dolphins, as well as to the ecological pressures that result in complex sociality.
22

Reproductive Biology of the Female Bottlenose Dolphin (Tursiops Truncatus)

Muraco, Holley Stone 11 December 2015 (has links)
The goal of this long-term study was to better understand the reproductive biology of the female bottlenose dolphin (Tursiops truncatus) and provide a hypothesis for how dolphins may communicate reproductive readiness to one another. Utilizing conditioned dolphins in aquaria, this dissertation examined several previously unknown aspects of dolphin reproduction, including ovarian follicular dynamics during the luteinizing hormone surge, urinary prolactin levels, estrus behavior, vaginal fluid arboriform arrangement, in-situ vaginal and cervical anatomy during estrus, reversed-phase high-performance liquid chromatography (RP-HPLC) of urine samples to identify proteins and peptides that may be used in chemical communication, and a review and anatomical analysis of dolphin vibrassal crypts. The diffusely seasonal dolphin estrous cycle is not controlled by photoperiod and has a 10-day follicular and 20-day luteal phase. A brief ovulatory LH surge is followed by ovulation within 48 hours. An ethogram of 20 reproductive behaviors was developed, and all occurrences of reproductive behavior were analyzed during conceptive estrous cycles. A novel form of standing heat estrus, termed immobility, was observed, and estrus dolphins displayed genital nuzzling, active and passive mounting with other females, and an increase of standing heat intensity as LH levels rose. Prolactin plays a role in pregnancy maintenance, mammary development, allo-mothering behavior, lactation, and lactational anestrus. Dolphins are similar to sows where weaning causes a return to estrus, and in the boar effect, where days to ovulation are shortened in the presence of a mature male. Dolphin vaginal fluid showed crystallization arrangements with large open mesh patterns, conducive to sperm transport, during the estrogenic follicular phase, and closed mesh during the luteal phase. RP-HPLC analysis revealed that urine contained large amounts of peptides and proteins with peaks that change throughout the estrous cycle and with changes in social grouping. Remnant vibrissae from dolphin follicular crypts were sectioned, and it was hypothesized that trigeminal nerve endings could act similarly to those found in the nasal mucosa of terrestrial species and respond to chemical stimuli. This study provides new data to better understand the reproductive biology of a holaquatic mammal.

Page generated in 0.0664 seconds