• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The spatial patterning of Hieracium pilosella invaded short tussock grasslands.

Dickinson, Yvette L. January 2008 (has links)
Hieracium pilosella is an invasive weed of New Zealand's short tussock grasslands. Since the 1960s, the abundance of H. pilosella has dramatically increased; it is now thought to occur in 6 million hectares of New Zealand (Espie, 2001), predominantly in grasslands. It is at least common in 42% of this area (Espie, 2001). Ecology is inherently spatial and as plants closely interact with their direct neighbours, the spatial arrangement of plants is vital to their functioning. A handful of recently published articles have implicated spatial structure of plant communities in theories of plant competition, resource use and the invasion of plant communities. The aims of this thesis were to: 1) determine if there are consistent spatial patterns in New Zealand's short tussock grasslands at relatively small scales (i.e. spatial relationships between individuals); 2) investigate how the invasion of H. pilosella may be altering these spatial patterns; and 3) establish if the spatial patterns of species, life-forms and root systems are being altered in different ways. Spatial patterns of both tussock and inter-tussock species, life-forms and root functional groups were evaluated at a range of short tussock grassland sites across a gradient of H. pilosella invasion levels in Canterbury, using both join-count statistics and Ripley's K-function. A classification system for the root functional groups of vascular species in these communities was developed and applied. It was found that species, life-forms and root functional groups in short tussock grasslands had generally consistent spatial patterns across sites both within and between species. These patterns were variable between significantly different levels of H. pilosella ground cover. The type of spatial pattern exhibited, and the way it was altered differed between species, life-form and root functional groups. For example, tussocks exhibited increased regularity up to scales of 160 cm and increasing aggregation at scales up to 500 cm, with increases in H. pilosella abundance. In contrast, both Agrostis capillaris and herbaceous chamaephytes had increased aggregation across scales up to 160 cm. These differences in spatial patterns along the gradient of invasion are a strong indication that H. pilosella is structurally fragmenting New Zealand's short tussock grasslands. This fragmentation is likely to have far reaching effects including the disturbance of invertebrate communities and the disruption of ecosystem services including pollination, vegetation regeneration, and nutrient cycling.
2

The spatial patterning of Hieracium pilosella invaded short tussock grasslands.

Dickinson, Yvette L. January 2008 (has links)
Hieracium pilosella is an invasive weed of New Zealand's short tussock grasslands. Since the 1960s, the abundance of H. pilosella has dramatically increased; it is now thought to occur in 6 million hectares of New Zealand (Espie, 2001), predominantly in grasslands. It is at least common in 42% of this area (Espie, 2001). Ecology is inherently spatial and as plants closely interact with their direct neighbours, the spatial arrangement of plants is vital to their functioning. A handful of recently published articles have implicated spatial structure of plant communities in theories of plant competition, resource use and the invasion of plant communities. The aims of this thesis were to: 1) determine if there are consistent spatial patterns in New Zealand's short tussock grasslands at relatively small scales (i.e. spatial relationships between individuals); 2) investigate how the invasion of H. pilosella may be altering these spatial patterns; and 3) establish if the spatial patterns of species, life-forms and root systems are being altered in different ways. Spatial patterns of both tussock and inter-tussock species, life-forms and root functional groups were evaluated at a range of short tussock grassland sites across a gradient of H. pilosella invasion levels in Canterbury, using both join-count statistics and Ripley's K-function. A classification system for the root functional groups of vascular species in these communities was developed and applied. It was found that species, life-forms and root functional groups in short tussock grasslands had generally consistent spatial patterns across sites both within and between species. These patterns were variable between significantly different levels of H. pilosella ground cover. The type of spatial pattern exhibited, and the way it was altered differed between species, life-form and root functional groups. For example, tussocks exhibited increased regularity up to scales of 160 cm and increasing aggregation at scales up to 500 cm, with increases in H. pilosella abundance. In contrast, both Agrostis capillaris and herbaceous chamaephytes had increased aggregation across scales up to 160 cm. These differences in spatial patterns along the gradient of invasion are a strong indication that H. pilosella is structurally fragmenting New Zealand's short tussock grasslands. This fragmentation is likely to have far reaching effects including the disturbance of invertebrate communities and the disruption of ecosystem services including pollination, vegetation regeneration, and nutrient cycling.
3

Review of current vegetation monitoring on privately protected land under ongoing economic use (grazing)

Bloor, Marcus January 2009 (has links)
There has been a noticeable shift in focus in biodiversity research in New Zealand over recent decades. Research has traditionally focused on biodiversity protection on the public estate, which was comprised primarily of ecosystems with lower productive potential (generally over 500m asl). Private lands generally have higher production potential and are often used for intensive cultivation and agricultural practices. They still however have significant potential for protecting biodiversity values. One of the key tools for protecting biodiversity values on privately owned lands in the Canterbury region are through legally binding QEII open space covenants and there is significant potential through industry certifications. QEII covenants are placed on the land in perpetuity and provide legally binding protection for biodiversity or landscape values within the covenant. This protection is voluntary and allows the land owner to continue to use the land for economic benefit providing it does not prove detrimental to biodiversity through monitoring outcomes. Case studies of QEII covenants that contain grazing clauses in the Canterbury region were used to determine what values are present and what monitoring is occurring in the field within these ecosystems. Photopoints and informal visual monitoring were the primary methods used by the QEII representatives to monitor vegetation in all of the covenants. Monitoring forms a critical feedback for all biodiversity protection. It is especially important to have an accurate feedback on vegetation condition and change from monitoring on properties that are grazed. Monitoring needs to be capable of providing sufficient information on vegetation change on these sites so that the most suitable grazing levels can be obtained by land managers. This thesis focuses on monitoring methods to ensure that this feedback is suitable and that the methods are cost effective. Current vegetation monitoring techniques were reviewed to determine which methods would be most suited to monitoring in these ecosystems where resources are tightly restricted and observers may not have existing skills and experience in monitoring these ecosystems. Methods reviewed were quadrats, transects, height-frequencies, photopoints, needle point, biomass, tagged plants, visual rank and remote sensing. Each method is described and then assessed on its suitability for monitoring tussock shrublands, with cost effectiveness being an important criterion. Of these methods quadrats, transects and height-frequencies were the most robust but also the most intensive and least cost effective methods. Visual rank, needle point and photopoints were the most cost effective, but are generally suited to monitoring single objectives. In most cases a combination of methods would be ideal to suit the objectives of the monitoring. QEII photopoint monitoring should follow guidelines more closely and include more complimentary information with their photographs. Clear monitoring objectives should be developed for every covenant that is grazed and these need to be determined before it is possible to accurately select appropriate monitoring methods. These objectives will also provide the monitoring program with more structure and direction. If possible a detailed management plan for each grazed covenant would be beneficial for values present. QEII are in a unique position, where they have the potential to develop a data base of biodiversity information for private land and contribute to other projects like the National Vegetation Survey (NVS).
4

Review of current vegetation monitoring on privately protected land under ongoing economic use (grazing)

Bloor, Marcus January 2009 (has links)
There has been a noticeable shift in focus in biodiversity research in New Zealand over recent decades. Research has traditionally focused on biodiversity protection on the public estate, which was comprised primarily of ecosystems with lower productive potential (generally over 500m asl). Private lands generally have higher production potential and are often used for intensive cultivation and agricultural practices. They still however have significant potential for protecting biodiversity values. One of the key tools for protecting biodiversity values on privately owned lands in the Canterbury region are through legally binding QEII open space covenants and there is significant potential through industry certifications. QEII covenants are placed on the land in perpetuity and provide legally binding protection for biodiversity or landscape values within the covenant. This protection is voluntary and allows the land owner to continue to use the land for economic benefit providing it does not prove detrimental to biodiversity through monitoring outcomes. Case studies of QEII covenants that contain grazing clauses in the Canterbury region were used to determine what values are present and what monitoring is occurring in the field within these ecosystems. Photopoints and informal visual monitoring were the primary methods used by the QEII representatives to monitor vegetation in all of the covenants. Monitoring forms a critical feedback for all biodiversity protection. It is especially important to have an accurate feedback on vegetation condition and change from monitoring on properties that are grazed. Monitoring needs to be capable of providing sufficient information on vegetation change on these sites so that the most suitable grazing levels can be obtained by land managers. This thesis focuses on monitoring methods to ensure that this feedback is suitable and that the methods are cost effective. Current vegetation monitoring techniques were reviewed to determine which methods would be most suited to monitoring in these ecosystems where resources are tightly restricted and observers may not have existing skills and experience in monitoring these ecosystems. Methods reviewed were quadrats, transects, height-frequencies, photopoints, needle point, biomass, tagged plants, visual rank and remote sensing. Each method is described and then assessed on its suitability for monitoring tussock shrublands, with cost effectiveness being an important criterion. Of these methods quadrats, transects and height-frequencies were the most robust but also the most intensive and least cost effective methods. Visual rank, needle point and photopoints were the most cost effective, but are generally suited to monitoring single objectives. In most cases a combination of methods would be ideal to suit the objectives of the monitoring. QEII photopoint monitoring should follow guidelines more closely and include more complimentary information with their photographs. Clear monitoring objectives should be developed for every covenant that is grazed and these need to be determined before it is possible to accurately select appropriate monitoring methods. These objectives will also provide the monitoring program with more structure and direction. If possible a detailed management plan for each grazed covenant would be beneficial for values present. QEII are in a unique position, where they have the potential to develop a data base of biodiversity information for private land and contribute to other projects like the National Vegetation Survey (NVS).
5

Two decades of vegetation change across tussock grasslands in New Zealand's South Island

Day, Nicola J. January 2008 (has links)
New Zealand's South Island tussock grasslands have been highly modified by human activities, including burning, grazing and introductions of exotic plants for pastoralism. Studies suggest that tussock grasslands are degraded, in that native species have declined, and exotic species have increased in both diversity and abundance. These trends are primarily thought to be related to the impacts of grazing and subsequent grazing removal. Few studies have assessed long-term changes that have occurred in tussock grasslands, and those that have are generally limited to one particular location. This thesis aimed to investigate temporal changes in community structure in tussock grasslands, and relate these changes to environmental variables and land tenure. Data were used from 90 permanently-marked vegetation transects, which were set up on 19 geographically widespread properties in areas of tussock grassland across Canterbury and Otago in the South Island of New Zealand. The transects were on land in both conservation and pastoral tenure. Each transect was 100 m, and consisted of 50 0.25 m² quadrats. The transects were measured between 1982 and 1986 (first measurement), were re-measured between 1993 and 1999 (second measurement) and again between 2005 and 2006 (third measurement). A total of 347 vascular species were observed over the 90 transects and three measurement times. Species richness declined between the first and second measurements (first time interval), and increased between the second and third measurements (second time interval), at both the small (quadrat) and large (transect) scales. Both native and exotic species declined in mean quadrat species richness during the first time interval, and then increased during the second time interval. Changes in mean quadrat species richness were similar on transects in both conservation and pastoral tenure. Multivariate analysis of species' occurrences in quadrats identified a long gradient in species composition for these 90 transects. Four key plant communities were identifed along this gradient and differed in their mean elevation: (1) Highly-modified pastoral community, (2) Short-tussock grassland community, (3) Tall-tussock grassland community, (4) Alpine mat-forming species community. A detailed investigation into temporal changes that occurred on 53 transects that occurred in short- and tall-tussock grassland communities showed that changes in species composition were not consistent over time. Transects on different properties changed in species composition by different amounts. Specifically, in ordination space, transects on two properties changed in composition significantly more than transects on one other property. The property that a transect was on also affected the way that it changed in composition, i.e. native species were more likely to have increased on transects on some properties. Transects in conservation tenure did not change in species richness or composition differently from those in pastoral tenure. Considering that many native plants in tussock grasslands are relatively slow-growing, and that these areas have been grazed and burned for more than a century, we may expect it to be some time before we can detect differences in vegetation dynamics on conservation land from that on pastoral land. The changes in the community structure of these tussock grasslands were related to a combination of environmental factors, such as soil chemistry, climate, and management factors. This study has allowed greater understanding of vegetation change in tussock grasslands, and demonstrates the importance of long-term ecological monitoring in making reliable and accurate predictions about landscape-scale changes in tussock grassland community structure.
6

Sulphur nutrition of the grass component on a tussock grassland soil

Vartha, E. W. January 1960 (has links)
The study undertaken was carried out in the montane tussock grassland region which in the South Island comprises some six million acres. Field trials were established at Mt Somers, Mid Canterbury. This study attempts to elucidate some of the factors connected with the sulphur nutrition of grasses. For the particular trial area it was hoped to determine four key aspects ; 1. Whether the response of the grass to nitrogen is governed by the sulphur level available. 2. A determination of what level of nitrogen was likely to be provided by clover fixation and transferred to the grass component under improved grassland conditions in the area. 3. What the optimum level of sulphur for the association is, allowing adequate sulphur for maximum possible nitrogen fixation as well as for utilization by the grass of the nitrogen transferred. 4. The effects of nitrogen and sulphur on plant chemical composition and any possible relationships between plant and soil as infuenced by these factors. Following a review of literature, a summary of experimental work is presented, with results, discussion and conclusions.

Page generated in 0.0598 seconds