Spelling suggestions: "subject:"win screw extrusion (TSE)"" "subject:"win screw xtrusion (TSE)""
1 |
Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusionCrawford, Deborah E., Wright, L.A., James, S.L., Abbott, A.P. 13 February 2020 (has links)
No / Mechanochemical synthesis has been applied to the rapid synthesis
of Deep Eutectic Solvents (DESs), including Reline 200 (choline
chloride : urea, 1 : 2), in a continuous flow methodology by Twin
Screw Extrusion (TSE). This gave products in higher purity and with
Space Time Yields (STYs), four orders of magnitude greater than for
batch methods
|
2 |
Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE)Egleston, B.D., Brand, M.C., Greenwell, F., Briggs, M.E., James, S.L., Cooper, A.I., Crawford, Deborah E., Greenaway, R.L. 25 May 2020 (has links)
Yes / The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded ‘technical grade’ mixture of CC3 and [3+5] species rendered the material porous. / Engineering and Physical Sciences Research Council (EPSRC) under the Grants EP/R005710/1 (AIC) and EP/R005540/1 (SLJ), and for an EPSRC Summer Vacation Bursary at the University of Liverpool (FG, RLG). We also thank the European Research Council under FP7, RobOT, ERC Grant Agreement No. 321156 (AIC), for financial support. RLG thanks the Royal Society for a University Research Fellowship.
|
3 |
Continuous multi-step synthesis by extrusion - telescoping solvent-free reactions for greater efficiencyCrawford, Deborah E., Miskimmin, C.K., Cahir, J., James, S.L. 13 February 2020 (has links)
Yes / Chemical manufacturing typically requires more than one step,
involving multiple batch processes, which makes synthesis at scale
laborious and wasteful. Herein, we demonstrate that several reactions can be telescoped into a single continuous process and/or be
carried out as a continuous multi-component reaction (MCR), by
twin screw extrusion (TSE), in the complete absence of solvent. / EPSRC (EP/L019655/1).
|
Page generated in 0.0859 seconds