• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 13
  • 2
  • 2
  • Tagged with
  • 38
  • 38
  • 38
  • 10
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

MODELLING OF COUNTER ROTATING TWIN SCREW EXTRUSION

Goger, Ali 10 1900 (has links)
<p>Intermeshing counter-rotating twin screw extruders (ICRTSE) are used extensively in the polymer processing industry for pelletizing, devolatilization and extrusion of various plastic products. ICRTSE have better positive displacement ability and are more suitable for shear sensitive materials compared to other types of twin screw extruders.</p> <p>The objectives of this thesis are to understand the flow mechanism and the effects of screw geometries and processing conditions in the ICRTSE. First, a simple flow model based on a volume of the conveying element of ICRTSE was used to calculate flow rate. Since ICRTSE do not give complete positive displacement, the various leakage flows were identified and taken into account in the simple flow model. Although the simple flow model provided reasonable results in terms of flow rate, computer simulations were found necessary due to the limitations of simple flow model. Second, a 3D computer simulation of ICRTSE was developed for various screw geometries and processing conditions. Both Newtonian and non-Newtonian fluids were examined.</p> <p>It was shown the simple model based on geometrical parameters for pumping behaviour give reasonable prediction of flow rate. It was found that determination of negative pressure should be taken into account in numerical simulations. The pumping efficiency is influenced positively by the ratio of flight width-to-channel width but it is affected negatively by the screw pitch length. It is negligibly changed with screw speed. Finally, the dominant flow is shear flow in ICRTSE and therefore, dispersive mixing capacity is very limited due to a lack of elongational effects.</p> / Master of Applied Science (MASc)
12

Twin-Screw Extrusion for the Production of Lipid Complexed Pea Starch as a Functional Food Ingredient / Twin-Screw Extrusion for a Functional Food Ingredient

Ciardullo, Sarah Kristi January 2018 (has links)
Canada is a major global producer of pulse products including pulse starch, which notably contributes to a healthy diet. Strategically, Canada is taking steps to research methods of adding greater value to these crop products, and functional foods like resistant starch are particularly interesting. The primary objectives of this study were to develop an effective reactive extrusion process to produce gelatinized lipid complexed pea starches with enhanced enzyme resistance and examine the effects of bulk lipid complexing conditions on physicochemical and functional properties of extruded pea starches. One type of commercially available pea starch, Nutri-Pea, was chosen as the research subject in this study. A number of methods including; Englyst digestion method, differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), contact angle, titrations, residence time distribution (RTD) and rapid visco analysis (RVA) were used to characterize the properties of extruded pea starches. The effects of feed formulation and extrusion conditions on lipid complexing and Englyst digestion profiles were systematically examined on two mixing devices. An extensive kinetics study was conducted on a lab scale twin-screw compounder, DSM-Xplore. The process was then scaled up to produce bulk lipid complexed pea starch on a Leistritz twin-screw extruder. The results showed that lipid complexing and digestion profiles were highly dependent on feed moisture and induced screw shear. Reactive extrusion of pea starches under optimized conditions achieved a significant but moderate increase in either resistant starch (RS) content (from 13.3% to 20.2%) or slowly digestible starch (SDS) content (from 7.85% to 23.3%) compared to their native counterparts. However, RS and SDS content could not be improved simultaneously based on the pea starch and extrusion process in this study. Increased degree of substitution (DS) was found for myristic acid complexed pea starches (nominal DS= ~0.8) when compared to palmitic acid complexed pea starch (nominal DS= ~0.5). Contact angle measurements, FTIR and DSC thermograms confirmed the presence of lipids. Lipid complexed starch films showed increasing hydrophobicity with increasing lipid content. As an alternative product compared to functional foods, the modified starch was considered as a biodegradable film for industrial applications. The material was produced at the highest moisture content for extruded native starch and two concentrations of lipid complexed starch using an intensive screw design. Preliminary results show that increasing lipid content and adding 1% glycerol to samples decreases the force per film thickness required to puncture films. However further investigation is required to determine effect of heat and moisture deformation. / Thesis / Master of Applied Science (MASc) / Incorporation of pulses into food products has been a major area of Canadian research for its potential to create new avenues of enzyme resistant food starches. Extrusion cooking is commonly used in industry for producing various food products such as snacks and cereals but little research has been reported on using an extruder to rapidly produce resistant pulse starches as a functional ingredient on a large scale; resistant starch is a functional food beneficial to humans in the same manner as insoluble fiber but exhibits improved textural properties. This study aimed to develop an effective reactive extrusion process to produce lipid complexed pea starches with enhanced enzyme resistance (i.e. increased slowly digestible starch (SDS) and resistant starch (RS) content) by an examination of the effects of reaction conditions on the properties of extrusion products. The lipid complexed pea starches under optimized conditions achieved a significant but moderate increase in either RS content or SDS content depending on the sample formulation compared to their native counterparts. However, RS and SDS content could not simultaneously be improved in this study.
13

In-process rheometry as a PAT tool for hot melt extrusion

Kelly, Adrian L., Gough, Timothy D., Isreb, Mohammad, Dhumal, Ravindra S., Jones, J.W., Nicholson, S., Dennis, A.B., Paradkar, Anant R 22 November 2017 (has links)
Yes / Real time measurement of melt rheology has been investigated as a Process Analytical Technology (PAT) to monitor hot melt extrusion of an Active Pharmaceutical Ingredient (API) in a polymer matrix. A developmental API was melt mixed with a commercial copolymer using a heated twin screw extruder at different API loadings and set temperatures. The extruder was equipped with an instrumented rheological slit die which incorporated three pressure transducers flush mounted to the die surface. Pressure drop measurements within the die at a range of extrusion throughputs were used to calculate rheological parameters such as shear viscosity and exit pressure, related to shear and elastic melt flow properties respectively. Results showed that the melt exhibited shear thinning behavior whereby viscosity decreased with increasing flow rate. Increase in drug loading and set extrusion temperature resulted in a reduction in melt viscosity. Shear viscosity and exit pressure measurements were found to be sensitive to API loading. These findings suggest that this technique could be used as a simple tool to measure material attributes in-line, to build better overall process understanding for hot melt extrusion.
14

Projeto de uma miniextrusora dupla-rosca corrotativa vertical para aplicação em Manufatura Aditiva / Design of a mini vertical co-rotating twin-screw extruder for applications in Additive Manufacturing

Justino Netto, Joaquim Manoel 28 July 2017 (has links)
O objetivo deste trabalho é avaliar a viabilidade técnica do desenvolvimento de uma miniextrusora dupla-rosca corrotativa que, além de processar a matéria-prima, possa exercer a função de um cabeçote de impressão 3D. Os avanços tecnológicos na área da manufatura relacionados à impressão 3D têm gerado grande entusiasmo nos últimos 10 anos, na medida em que possibilitam a fabricação de formas geométricas de alta complexidade diretamente a partir de arquivos digitais, agilizando a cadeia de produção e reduzindo custos de ferramental associados. Apesar das inúmeras vantagens, a Manufatura Aditiva (MA) ainda é uma tecnologia em desenvolvimento e, portanto, apresenta desafios para que possa realmente atender às novas demandas criadas pela comunidade científica e industrial, muitos deles relacionados com a busca por novos materiais de impressão, com a melhoria dos materiais utilizados, das estratégias de deposição visando menor tempo de fabricação e maior precisão dimensional e com a ausência de padronização para os processos. As tendências no desenvolvimento de materiais para as técnicas de MA por extrusão apontam tanto para a elaboração de compósitos de matriz polimérica e blendas capazes de conferir propriedades mecânicas mais apropriadas às impressões e/ou proporcionar novas funcionalidades, quanto para o desenvolvimento de sistemas que possibilitem a deposição de matérias-primas diferenciadas ou a incorporação de soluções de pós-processamento para compor sistemas híbridos de manufatura. Nesse contexto, a principal motivação deste trabalho é a ausência de um equipamento para produção de compósitos poliméricos e blendas a partir pequenas quantidades de material em pó (cerca de 200 g) e que também seja capaz de estruturar objetos tridimensionais por meio da deposição de camadas sucessivas de material fundido. A fim de obter o conjunto de parâmetros geométricos e operacionais fundamentais para a definição e avaliação da miniextrusora dupla-rosca, houve a necessidade de se desenvolver um procedimento sistemático integrando conceitos de projeto de máquinas, processo de extrusão dupla-rosca e reologia aplicados ao contexto da MA. O método de projeto resultante considera requisitos funcionais e restrições geométricas específicas, conciliando a necessidade de manter uma folga constante entre as roscas com a desejada ação de autolimpeza obtida por meio da interpenetração das mesmas. A capacidade de processar o material viscoso com o torque fornecido às roscas, requisito crítico a ser atendido, foi avaliada teoricamente para o ABS (acrilonitrila butadieno estireno) virgem e validada experimentalmente para três sistemas baseados em ABS com auxílio de um reômetro de torque. Ao final do estudo, foi obtido um modelo geométrico virtual de dimensões reduzidas (69,6x75x201 mm) e na sequência foi construído um mock-up com auxílio da impressão 3D para avaliação das tolerâncias dimensionais, cinemática e funcionalidades básicas do conjunto. Estima-se que a miniextrusora projetada, operando a 10 rpm, seja capaz de processar até 0,2 kg/h e gerar 60% do calor necessário para a fusão (ABS), mostrando-se viável para aplicação como cabeçote intercambiável de impressão 3D destinado à pesquisa de novos materiais para MA. / The objective of this document is accessing the development feasibility of a mini co-rotating twin-screw extruder capable of mixing different materials and performing the function of 3D printhead. The technological progress in the manufacturing context related to 3D printing have generated great enthusiasm in the last 10 years, as it enables fabricating complex geometric shapes directly from digital files, speeding up production chain and reducing associated tooling costs. Despite the many advantages, Additive Manufacturing (AM) is still an emerging technology and must overcome challenges to effectively meet the new demands created by scientific and industrial communities, many of them related to the search for new building materials, improving current materials and deposition strategies, in order to achieve faster fabrication and increased dimensional precision, as well as the lack of process standardization. Tendencies towards material development to AM techniques based in extrusion points to the formulation of different polymer matrix composites and blends capable of imparting more appropriate mechanical properties to the 3D prints and/or provide new functionalities, as well as to the development of systems capable of depositing special raw materials or to the incorporation of post processing solutions composing hybrid manufacture systems. In that context, the main motivation for this work is the lack of an equipment for producing polymer composites and blends from small amounts of powder material (about 200 g) that is also capable of structuring three-dimensional objects depositing successive layers of fused material. In order to obtain the fundamental geometric and operational parameters set to define and access the mini twin-screw extruder, it was necessary to develop a systematic procedure integrating concepts from machine design, twin-screw extrusion and rheology applied to the AM context. The resulting design method considers specific functional requisites and geometric constraints, conciliating the need for a constant clearance between the screws and the desired self-cleaning action obtained with closely intermeshing screws. The capacity to process viscous material with the torque provided to the screws, a critical requisite to be met, was theoretically evaluated considering ABS resin (acrylonitrile butadiene styrene) and experimentally validated to three polymer systems based in ABS with a torque rheometer. At the end of the study, a virtual geometric model with reduced dimensions (69.6x75x201 mm) was obtained and then a mock-up was 3D printed in order to evaluate dimensional tolerances, cinematics and basic functionalities. It is estimated that the mini twin-screw extruder designed is able to process up to 0.2 kg/h running at 10 rpm and generate 60% of the heat necessary to melt the polymer (ABS), showing to be feasible to its application as an interchangeable 3D printhead for research of new materials in AM.
15

The Influence of Processing Conditions on the Thermo-physical Properties and Morphology of Polycarbonate / Poly (butylene terephthalate) Blends

Rogalsky, Allan January 2009 (has links)
The objective of this work is to determine the effect of four process variables on the properties of blends composed of bisphenol-A polycarbonate (PC) and poly (butylene terephthalate) (PBT) polymers which are compounded using a large scale commercial extruder. The four variables studied are blend composition, specific energy consumption, residence time and shear rate. The last three factors were varied using the extruder screw speed and feed rate. The PC/PBT blends, commercially known as XENOY, were compounded using a WP ZSK 58 mm co-rotating twin screw extruder at the facility of SABIC Innovative Plastics in Cobourg Ontario. The extruder was instrumented to measure online the die pressure, specific energy consumption and blend temperature. The blends were characterized using differential scanning calorimetry, (DSC), scanning electron microscopy, (SEM), gel permeation chromatography, (GPC), and melt volume flow rate, (MVR). After processing, the blend properties determined were melting temperature, glass transition temperature, crystallinity, amorphous phase weight fraction, amorphous phase composition, phase morphology, PBT-rich-phase size, blend molecular weight distribution, and MVR. Using principles available in the literature, a linear regression model was developed to relate the process variables with the online measured properties and output blend properties. Fitting this model allowed the relative importance of each process variable to be estimated for each property. An attempt was also made to identify the general type of PC/PBT blend studied and how it compares with published PC/PBT blend data. It was found that the blends studied were well stabilized since there was no evidence of significant co-polymer formation during processing. Small decreases in molecular weight were attributed to mechanical degradation. Blending increased the crystallization and melting temperatures, as well as blend crystallinity. No practically significant difference in melting temperatures was observed between the different processing conditions. Analysis of glass transitions indicated that the blend components were partially miscible. The amorphous phase compositions were unaffected by blend composition or processing; however, the weight fraction PC-rich-phase present in the blend was strongly influenced by the screw speed. The phase structure of as-extruded blends could not be resolved using the SEM. Therefore, the blends were annealed to coarsen the phases. After annealing, a continuous PC-rich-phase and a discrete PBT-rich-phase were observed. The PBT phase size increased with increasing PBT content. No other statistically significant effects on phase size were observed but this is not conclusive due to the large scatter in the measurements. MVR was primarily influenced by blend composition and specific energy consumption, with the effects of composition being dominant. Further study using higher imaging resolution is required if the phase structures of as received blend pellets are to be characterized. Contrary to current practice, it is recommended that the Utracki-Jukes equation be used rather than the Fox equation for determining amorphous phase composition from glass transition data in PC/PBT blends.
16

The Influence of Processing Conditions on the Thermo-physical Properties and Morphology of Polycarbonate / Poly (butylene terephthalate) Blends

Rogalsky, Allan January 2009 (has links)
The objective of this work is to determine the effect of four process variables on the properties of blends composed of bisphenol-A polycarbonate (PC) and poly (butylene terephthalate) (PBT) polymers which are compounded using a large scale commercial extruder. The four variables studied are blend composition, specific energy consumption, residence time and shear rate. The last three factors were varied using the extruder screw speed and feed rate. The PC/PBT blends, commercially known as XENOY, were compounded using a WP ZSK 58 mm co-rotating twin screw extruder at the facility of SABIC Innovative Plastics in Cobourg Ontario. The extruder was instrumented to measure online the die pressure, specific energy consumption and blend temperature. The blends were characterized using differential scanning calorimetry, (DSC), scanning electron microscopy, (SEM), gel permeation chromatography, (GPC), and melt volume flow rate, (MVR). After processing, the blend properties determined were melting temperature, glass transition temperature, crystallinity, amorphous phase weight fraction, amorphous phase composition, phase morphology, PBT-rich-phase size, blend molecular weight distribution, and MVR. Using principles available in the literature, a linear regression model was developed to relate the process variables with the online measured properties and output blend properties. Fitting this model allowed the relative importance of each process variable to be estimated for each property. An attempt was also made to identify the general type of PC/PBT blend studied and how it compares with published PC/PBT blend data. It was found that the blends studied were well stabilized since there was no evidence of significant co-polymer formation during processing. Small decreases in molecular weight were attributed to mechanical degradation. Blending increased the crystallization and melting temperatures, as well as blend crystallinity. No practically significant difference in melting temperatures was observed between the different processing conditions. Analysis of glass transitions indicated that the blend components were partially miscible. The amorphous phase compositions were unaffected by blend composition or processing; however, the weight fraction PC-rich-phase present in the blend was strongly influenced by the screw speed. The phase structure of as-extruded blends could not be resolved using the SEM. Therefore, the blends were annealed to coarsen the phases. After annealing, a continuous PC-rich-phase and a discrete PBT-rich-phase were observed. The PBT phase size increased with increasing PBT content. No other statistically significant effects on phase size were observed but this is not conclusive due to the large scatter in the measurements. MVR was primarily influenced by blend composition and specific energy consumption, with the effects of composition being dominant. Further study using higher imaging resolution is required if the phase structures of as received blend pellets are to be characterized. Contrary to current practice, it is recommended that the Utracki-Jukes equation be used rather than the Fox equation for determining amorphous phase composition from glass transition data in PC/PBT blends.
17

Développement d'un procédé innovant de dégradation enzymatique des parois végétales pour la production de bioéthanol seconde génération / Innovativ process development of enzymatic degradation cell wall plant to produce second generation of bioethanol

Brault, Julien 13 November 2013 (has links)
Les procédés de transformation de biomasse lignocellulosique en bioéthanol de seconde génération sont actuellement des sujets de recherche très répandus mais ne sont toujours pas compétitifs avec ceux de la première génération. Les facteurs clés limitants sont : l’efficacité et les coûts du prétraitement, les rendements de l’hydrolyse enzymatique, et la co-fermentation C5-C6. Un procédé continu de déconstruction de la matière végétale, compactant un prétraitement thermo-mécano-chimique utilisant un agent alcalin avec une introduction d’enzymes en extrusion bi-vis, appelé bioextrusion, est développé dans cette étude. Il permet de préparer la matière cellulosique à un haut taux de matière sèche (>20%), à une saccharification et une fermentation pouvant être simultanées (SSF). Le traitement continu peut extraire une grande part des hémicelluloses (jusqu’à 97%) et des lignines (>50%) et améliorer l’accessibilité de la cellulose tout en initiant sa dépolymérisation par des cocktails enzymatiques pendant la bioextrusion. Plusieurs matières premières (Résidu de maïs doux, Bagasse d’agave bleue, Résidu d’huilerie de palme, Paille d’orge, Résidu d’Eucalyptus, Sarments de vigne et Bagasse de canne à sucre) ont été caractérisées et leurs comportements vis-à-vis du procédé ont été comparés. L’évolution de la composition de ces matières à travers le procédé et leur hydrolysabilité ont été étudiées. Suite au traitement, une augmentation du rendement de saccharification dans un réacteur (24h de temps de réaction à 20% de consistance) a été obtenue pour ces matières (jusqu’à 85% des C6 théoriques et 70% des C5-C6 théoriques). Les rendements de fermentation non optimisés atteignent un maximum de 85% théorique des sucres C6 convertis, 65% théorique des C5-C6 convertis, et une concentration d’éthanol de 15g/100g extrudat sec. Le procédé de production d’éthanol dans son ensemble (avec addition de l’énergie de la valorisation des coproduits) atteint un ratio « énergie consommée/produite » de 0.5-0.6. Le nouveau procédé présente ainsi les avantages de minimiser la consommation d’énergie par l’application de faibles températures, de minimiser la consommation d’eau par l’utilisation de faibles ratios liquide/solide, de ne pas produire d’inhibiteurs de fermentation et d’être rapide, compact, continu et adaptable sur différentes biomasses. / Lignocellulosic biomass transformation processes in order to produce second generation bioethanol are actually widely studied all around the world but still not yet competitive compare to the first generation. The limiting key factors of the different processes are: the pre-treatment efficiency and costs, the enzymatic hydrolysis yields, and the co-fermentation C5-C6. A continuous plant matter deconstruction process, compacting a thermo-mechanico-chemical pre-treatment using alkali solution with an enzymes injection in twin-screw extruder, called bioextrusion, is developed in this study. It allows preparing the cellulosic material at a high dry matter content (>20%), to a possible simultaneous saccharification and fermentation (SSF). This continuous treatment may extract a big part of hemicelluloses (until 97%) and lignin (>50%) and configures cellulose to a better accessibility and a start of its depolymerisation by enzymes cocktail during the bioextrusion. Several raw matters (Sweet Corn Cob and Spathe, Blue Agave Bagass, Oil Palm Empty Fruit Bunch, Barley Straw, Eucalyptus Residue, Grape Pruning Residue and Sugarcane Bagass) have been characterized and theirs behaviours toward to the process were compared. Evolutions of these matters compositions throughout the process and their hydrolysability have been studied. Further to the treatment, an improvement of the saccharification yields in reactor (24h reaction time at 20% consistency) has been obtained on these matters (until 85% of theoretical C6 and 70% of theoretical C5-C6). The not optimized fermentation yields reach a maximum of 85% of theoretical converted C6 sugars, 65% of theoretical converted C5-C6 sugars, and an ethanol concentration of 15g/100g dry matter extrudate. The whole ethanol production process (with addition of energy from the recovery of the by-products) is achieved with a “consumed/produced energy” ratio of 0.5-0.6. The new process presents the advantages to minimize the energy consumption by operating low temperatures, to minimize water consumption by working at low liquid/solid ratio, to not produce fermentation ‘s inhibitors and to be quick, compact, continuous and adaptable to different biomasses.
18

Incorporation de fibres végétales dans des matrices thermoplastiques biosourcées et biodégradables par extrusion bi-vis pour la production de matériaux biocomposites moulés par injection / Vegetal fibres incorporation in biobased and biodegradable thermoplastic matrices via twin-screw extrusion for the production of injection-molded biocomposite materials

Gamon, Guillaume 12 July 2013 (has links)
L’incorporation de fibres végétales, différentes par leur origine, leur nature chimique et leur forme, a été effectuée dans deux matrices thermoplastiques : le poly(acide lactique) et la farine de blé thermoplastifiée. Ces deux matrices biodégradables et biosourcées ont elles aussi des natures chimiques et des propriétés thermo-mécaniques différentes. Des incorporations de fibres jusqu’à 40 % en poids ont permis de modifier considérablement les propriétés de base des matrices et d’améliorer certaines de leurs faiblesses (stabilité thermique, manque de rigidité…). Les fibres de miscanthus ont été sélectionnées comme étant les plus performantes pour l’amélioration des propriétés des deux matrices. Les propriétés des matériaux composites ont été ajustées par un travail sur la formulation du mélange (ajout de plastifiants) et l’optimisation du procédé complet, jusqu’au moulage par injection. L’incorporation des fibres dans un mélange compatibilisé des deux matrices a également été testée et réalisée en une seule étape d’extrusion, comprenant la plastification de la farine, le mélange des polymères et la dispersion des fibres. / Incorporation of vegetal fibres, differing by their source, their chemical composition and their shape, have been performed by twin screw extrusion in two thermoplastic matrices: the poly(lactic acid) and the thermoplastified wheat flour. These two biobased and biodegradable matrices have also different chemical character and thermo-mechanical properties. Fibre incorporation up to 40 % in weight considerably modified both matrix properties and improved several weaknesses (thermal stability, lack of stiffness…). Miscanthus fibres have been selected as best improvers for properties of both matrices. Materials properties were adjusted with a formulating work (addition of plasticizers) and whole process optimization, until injection-molding. Fibre incorporation in a compatibilized blend of the two matrices was also tested and performed in a one step extrusion process, including flour thermoplasticization, polymer blending and fibre dispersion.
19

Fractionnement des complexes lignine-polysaccharides issus de différentes biomasses lignocellulosiques par extrusion bi-vis et séparation chromatographique / Fractionation of lignin-polysaccharides complex from different lignocellulosic biomass by twin-screw extrusion and chromatographic separation

Mogni, Assad 09 December 2015 (has links)
L’objectif de ces travaux est de développer une nouvelle voie de valorisation de différents coproduits agricoles et forestiers. L’étude s’est focalisée sur l’étape de séparation entre les hémicelluloses et les lignines contenues dans des extraits aqueux obtenus par extrusion bi-vis. La technologie bi-vis du fait de sa modularité a été choisie pour évaluer différentes conditions d’extraction. Les essais ont été menés afin de mettre en évidence l’influence des effets mécanique, thermique et chimique sur l’extraction des hémicelluloses à partir des différentes matrices végétales étudiées. Les travaux ont été conduits soit en conditions hydrothermales, eau sous pression et haute température, soit en conditions faiblement alcalines pour extraire des molécules les plus natives possibles. Ceci a permis d’identifier les conditions d’extraction les plus favorables en fonction des caractéristiques de chacune des biomasses. Dans un second temps, les extraits obtenus, contenants des hémicelluloses et des composés phénoliques, ont été purifiés au moyen de méthode de fixation sur résines d’échange d’ions et d’adsorption. Les travaux se sont focalisés sur la compréhension des mécanismes de fixation des molécules avec des solutions modèles contenant un ou plusieurs solutés. La cinétique et les isothermes d’échanges ont été évaluées pour l’acide férulique, l’acide coumarique et la lignine. Les résultats ont ensuite été comparés à ceux obtenus avec les extraits alcalins. Cette étude a permis d’identifier les mécanismes d’échanges qui interviennent lors de la séparation des complexes lignine-polysaccharides. / The objective of this work is to validate a new way of valuing various agricultural and forestry coproducts. Study was devoted on the separation of lignin and hemicelluloses contained in extracts obtained by twin-screw extrusion. Twin-screw technology has been chosen to evaluate different extraction conditions. Trial conditions have been adopted in order to highlight the influence of mechanical, thermal and chemical effects on the extraction performances for various plant matrices. Efforts have been made to give priority to mild extraction conditions in the interest of preserving the integrity of the extracted polymers and limiting the environmental impact. Thus hydro-thermal extraction tests without chemical solvents were compared to more conventional alkaline extraction to evaluate their efficiency. This identified the most favorable extraction conditions according to the characteristics of each biomass. The extracts, with hemicelluloses and phenolic compounds, were purified with ion exchange and adsorption resins. Work focused on mechanisms fixations characterization with model solutions conditions containing one or several molecules. Kinetic and isotherm were determined for lignin, coumaric acid and ferulic acid. Then, results were compared to results obtained with the extracts. This study allowed to identify the mechanisms involved in the separation of the lignin-carbohydrates complex.
20

Carbon Nanotube Composites Prepared by Ultrasonically Assisted Twin Screw Extrusion

Lewis, Todd M. 11 September 2014 (has links)
No description available.

Page generated in 0.4747 seconds