• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration d'un modèle détaillé d'une boucle diphasique gravitaire et développement d'un modèle réduit associé / Elaboration of a Detailed Model of a Two-Phase Loop Thermosyphon and Development of an Associated Reduced Model

Bodjona, Hèzièwè Serge 31 March 2017 (has links)
Les systèmes électriques occupent de nos jours une place de plus en plus importante dans le domaine du transport aérien, ferroviaire et automobile. Ce progrès s'est accompagné de la miniaturisation des systèmes(convertisseurs) qui nécessitent un refroidissement très performant. Alors que les systèmes de refroidissement traditionnels atteignent leurs limites, une des solutions consiste à utiliser des boucles fluides diphasiques reposant sur le changement de phase liquide-vapeur du fluide de travail, en particulier les boucles diphasiques gravitaires. L'objectif de cette thèse est double: proposer un modèle détaillé de la boucle ainsi qu'un modèle réduit capable de calculer les variables en tout point de la boucle et en tout instant mais beaucoup moins gourmand en temps de calcul. Concernant tout d'abord le modèle détaillé, les équations de l'écoulement monodimensionnel et compressible du fluide à l'état monophasique et diphasique en régime transitoire sont résolues par la méthode d 'Euler explicite et par la méthode des volumes finis. Le mélange liquide-vapeur se comporte comme un mélange homogène, en équilibre mécanique et thermique. Les lois de fermeture du modèle sont déduites des lois d'état du type "Stiffened Gas". En ce qui concerne le modèle réduit, une extension de la méthode d'identification modale est proposée. La structure du modèle réduit est tout d'abord déterminée en effectuant la projection de Galerkine des équations de conservation continues. Ensuite les paramètres dumodèle réduit sont identifiés par la résolution d'un problème d'optimisation. Le modèle réduit ainsi construit est alors validé sur plusieurs cas présentant des dynamiques différentes. / Today, electrical systems are becoming increasingly important in the air, rail and automotive sectors.The immediate consequence of this progress is the miniaturization of systems (converters) requiring very important cooling means. Whereas conventional cooling solutions are reaching their limit, an alternative one can be sought in two-phase loops based on the liquid-vapor phase change of a working fluid, in particular two-phase loop thermosyphon. The objective of this thesis is twofold : to propose a detailed model of a two phase loop thermosyphon as well as a reduced model able to calculate the variables at any location of the loop at any time with a much smaller computing time. First, the equation of the transient one-dimensional compressible one-phase and two-phase fluid flow is solved using the explicit Euler method of order 1 and the finite volume method. The liquid-vapor mixture is modeled as a homogeneous mixture at mechanical and thermal equilibrium. The closure laws of the model are deduced from the "Stiffened Gas" state laws. For the reduced model, an extension of the modal identification method is proposed. The structure of the reduced model is first determined carrying out the Galerkin projection of the continuous conservation equations.Then the parameters of the model are identified by the resolution of an optimization problem. The reduced model thus constructed is then validated on several cases with different dynamics
2

Refroidissement d'une armoire de Télécommunication avec Bouche Diphasique Thermosyphon / Two-phase cooling of a telecomunication cabinet

Mecheri, Boubakeur 17 February 2011 (has links)
France Télécom possède des armoires de télécommunication dont la puissance est limitée à cause de la dissipation thermique des équipements actifs qui entraîne une augmentation de leur température interne. La puissance des équipements limite le nombre de clients qu'il est possible de connecter aux services des réseaux à hauts débits. En plus de cette contrainte, les armoires sont soumises à des effets liés au climat (ensoleillement) qui peuvent être sévères et difficiles à maîtriser. Ceci nécessite l’intégration de systèmes de refroidissement permettant de maintenir la température des composants en dessous de la limite imposée (55°C). C’est dans cet objectif que ce travail de thèse a été mené au sein du laboratoire FEMTO-ST en collaboration avec le service R&D de France Télécom à Lannion. Le refroidissement par changement de phase est favorisé pour maintenir la température de fonctionnement du système stable et pour être utilisé dans les systèmes à haute densité de puissance. Les boucles diphasiques sont des systèmes de refroidissement pour le contrôle thermique et fonctionnent passivement sans pompage mécanique du fluide caloporteur. Après une étude bibliographique sur les boucles de refroidissement diphasiques et leurs applications, on a constaté que les boucles thermosiphons sont particulièrement adaptées aux applications où le faible coût, l'efficacité énergétique et la fiabilité d’entretien sont souhaités. Cette étude a été conduite en suivant un cahier de charge proposé par France Télécom qui consiste à : (i) développer un modèle numérique permettant de modéliser les transferts échangés entre l’armoire de télécommunication et le milieu ambiant, (ii) mener une étude expérimentale en vue de concevoir une boucle thermosiphon pour le refroidissement d’armoires de télécommunication.Le mémoire de cette thèse montre la limitation des systèmes de refroidissement classiques utilisant des écoulements d’air en convection forcée ou autre fluides sans changement de phase. Un modèle numérique est développé afin de permettre la prédiction des températures à l’entrée des boitiers chauffants pour différentes conditions climatiques. Le choix est porté sur l’utilisation d’une modélisation par réseau nodal. La modélisation est effectuée en tridimensionnel et en régime transitoire. Nous avons également modélisé le rayonnement solaire auquel est soumise l’armoire de télécommunication. Le modèle développé a été validé en effectuant une comparaison entre les résultats issus de la modélisation et ceux obtenus à partir des expériences menées au laboratoire et à la plateforme CLIMA chez France Télécom. Les essais sont effectués en régime transitoire en imposant une puissance électrique et en faisant varier la température ambiante ou la densité de flux thermique solaire. L’ensemble des résultats obtenus ont permis de constituer une base de données. Le deuxième objectif fixé dans le cadre de ce travail de thèse est la conception d’un système de refroidissement sous forme d’une boucle thermosiphon. La contrainte principale qui a guidée cette conception était le fait que la boucle doit refroidir l’armoire et assurer une température d’air à l’entrée des équipements inférieure à la limite imposée par la norme ETSI. Ceci nous a mené à concevoir un prototype de boucle thermosiphon dont la puissance thermique qu’il doit dissiper est imposée. On a montré que ce prototype permet de dissiper des puissances thermiques allant jusqu’à 470 W en utilisant une petite charge de npentane. Nous avons effectué des essais sur le refroidissement du prototype d’armoire de télécommunication en utilisant la boucle thermosiphon légèrement modifiée. On montre que les performances thermiques obtenues en utilisant un mode de refroidissement en boucle thermosiphon sont meilleures. Les boucles thermosiphons semblent intéressantes pour un refroidissement passif de matériels déployés dans un réseau de télécommunication... / France Telecom owns telecommunication cabinets whose power is limited because of the heat dissipation of active devices which leads to increased internal temperature. Power equipment limits the number of clients that can connect to networks services with high data rates. In addition to this constraint, the cabinets are subject to climate-related impacts (sunlight) that can be severe and difficult to master. This requires the integration of cooling systems to maintain the temperature of components below the limit (55 ° C). It is with this aim that this work was conducted in the laboratory Femto-ST in collaboration with the R & D department of France Telecom in Lannion.Cooling the phase change is promoted to maintain the operating temperature of the stable and system for use in systems with high power density. The loops are two-phase cooling systems for thermal control and operate passively without mechanical pumping of the coolant.After a literature review on two-phase cooling loops and their applications, it was found that the thermosyphon loops are particularly suitable for applications where low cost, energy efficiency and reliability maintenance are desired. This study was conducted by following a set of specifications proposed by France Telecom which involves: (i) develop a numerical model to model transfers exchanged between the cabinet and the telecommunications environment, (ii) conduct an experimental study to design a thermosyphon loop for cooling telecommunication cabinets.The memory of this thesis shows the limitation of conventional cooling systems using air flow forced convection or other fluids without phase change. A numerical model is developed to enable the prediction of temperatures at the inlet of heated enclosures for different climatic conditions. The choice is focused on the use of a nodal network modeling. The modeling is done by three-dimensional and transient. We also modeled the solar radiation, which applies to the telecommunications closet. The developed model was validated by comparison between the results of modeling and those obtained from experiments in the laboratory and platform CLIMA at France Telecom. The tests are performed by imposing transient electrical power and varying the temperature or heat flux density solar. All the results obtained allowed to establish a database.The second goal as part of this thesis is the design of a cooling system as a thermosyphon loop. The main constraint has guided this design was that the loop needs to cool the cabinet and provide air temperature at the inlet of the equipment below the limit imposed by the ETSI. This led us to design a prototype of thermosyphon loop with a heat output that must be dissipated is imposed. We showed that this prototype is used to dissipate the heat ratings up to 470 W using a small load of npentane.We conducted tests on the prototype cooling telecommunication cabinet using slightly modified thermosyphon loop. We show that the thermal performance obtained by using a cooling mode loop thermosyphon are better. Thermosyphon loops seem interesting for passive cooling of equipment deployed in a telecommunications network. Indeed, being able to use an air conditioning system independent and requires no energy should be promoted in a reduction of overall energy consumption.
3

A Pump-Assisted Capillary Loop Evaporator Design for High Heat-Flux Dissipation

Silvia Anali Soto de la Torre (11433022) 29 October 2021 (has links)
Passive two-phase cooling devices such as capillary pump loops, loop heat pipes, and vapor chambers can utilize capillary-fed boiling in the porous evaporator wick to achieve high heat flux dissipation, while maintaining low thermal resistances. These systems typically rely only on passive capillary pumping through the porous wick to transport fluid. This inevitably leads to limits on the maximum heat flux and power dissipation based on the maximum capillary pressure available. To overcome these capillary pumping limitations in these passive devices, a mechanical pump can be added to the system to create a pump-assisted capillary loop (PACL). The pump can actively transport the fluid to overcome the pressure drop in liquid lines, reserving all of the available capillary action to draw liquid from a compensation chamber into the porous evaporator at the location of the heat input.<br>Previous studies on pump-assisted capillary loops have used a porous pathway to draw liquid to the heated evaporator surface from a liquid supply in the compensation chamber. This pathway typically comprises porous posts distributed over the heated surface area to ensure uniform liquid feeding during boiling and to avoid dryout regions. This thesis presents an evaporator design for a pump-assisted capillary loop system featuring a non-porous manifold connection between the compensation chamber and the evaporator wick base where boiling occurs. By using this approach, microscale liquid-feeding features can be implemented without the manufacturing restrictions associated with the use of porous wick pathways (such as sintered powder copper particles).<br>An analytical model for two-phase pressure drop prediction in the base wick is developed and used to define the evaporator geometry and feeding structure dimensions. A parametric analysis of the evaporator geometry is performed with the target of achieving a maximum heat dissipation of 1 kW/cm2 without a capillary limit. A 24 x 24 microtube array configuration with an outside tube diameter of 0.25 mm was identified as a result of this analysis. This manifold delivers liquid the base wick manufactured from sintered copper particles with a mean particle diameter of 90 microns. <br>The resulting evaporator geometry was translated into a manufacturable copper manifold design. A modular test section design consisting of a cover for attachment of fittings, a support structure for holding the manifold, a sintered copper wick base, and a carrier plate was created and manufactured, to accommodate for future testing scheduled to be performed by an external industry partner. The resulting design provides a testing vehicle to investigate the effect of different tubing arrangements and dimensions, as well as multiple base wick configurations. This knowledge can be used to engineer future evaporator architectures for enhanced performance. The improved understanding providing on the effect of liquid feeding distribution into the base wick, the effects of boiling on the base wick pressure drop, and the manufacturing limitations can each improve the performance prediction of evaporators with top feeding. <br>

Page generated in 0.0472 seconds