Spelling suggestions: "subject:"gasphaseflow"" "subject:"phaseflow""
281 |
渦法による固気二相自由乱流の数値解法 (数値モデルと二次元混合層への適用)内山, 知実, UCHIYAMA, Tomomi, 成瀬, 正章, NARUSE, Masaaki, 峯村, 吉泰, MINEMURA, Kiyoshi 11 1900 (has links)
No description available.
|
282 |
Flow regime transitions during condensation in microchannelsNema, Gaurav 07 January 2008 (has links)
Microchannel heat exchangers are widely used in air-conditioning and refrigeration systems, high heat flux electronics cooling, and are also being considered for biological devices. Heat transfer and pressure drop in microchannels with single-phase flow have been studied in greater detail compared to two-phase flow. Heat transfer and pressure drop in two-phase flow inside tubes are closely related to the structure of the flow. In convective condensation, the fluid flows in a variety of flow regimes as it changes from vapor to liquid. The flow patterns formed in microchannels differ in type and extent from those seen in conventional tubes. Wavy and stratified flows are virtually absent at microchannel dimension, while intermittent and annular flows predominate. The subject research focuses on understanding the flow physics in microchannels during condensation. The extensive condensation flow-regime database of a previous study is employed for this purpose. This database comprises the flow-regime observations in tubes of hydraulic diameter ranging from 1-4.91 mm during condensation of refrigerant R-134a. The mass flux ranges from 150-750 kg/m2-s over a vapor quality range of 0 to 1. The results from this previous experimental study are used to understand the physical mechanisms and the governing influences for each of the identified flow regimes. Using this understanding and data, criteria for transitions between the different regimes have been developed. These criteria developed in non-dimensional form can be utilized to identify the flow regimes and transitions for various fluids, operating conditions and channel sizes, thereby generalizing the applicability of these results. This mechanistic determination of condensation flow regimes in different operating conditions and geometries will assist in the choice of the appropriate models for the evaluation of heat transfer and pressure drop, and therefore enable the development of optimum microchannel heat exchangers.
|
283 |
Bubbly Flow Experiment in Channel Using an Optical Probe and Tracking AlgorithmKhan, Abdul 2012 August 1900 (has links)
In this study, the phenomenon of two-phase flow was investigated in a square channel. The experiment was performed with stagnant liquid conditions. The gas and liquid dynamics of the bubbly flow were observed in two regions far from the inlet. Air was inserted through a porous media at three superficial gas velocities: 4.6 mm/s, 2.5 mm/s, and 1.4 mm/s.
Two techniques were applied in the experiment to measure the bubbly flow: an optical probe and an in-house developed tracking algorithm. Measurements of the bubble interface velocity, void fraction, bubble frequency, time of flight, and Sauter mean diameter were obtained by using the optical probe. The duration of the probe measurements for all three flow rates and both regions lasted approximately 33 hours. The tracking algorithm was used to analyze the experimental data for two visual methods: shadowgraphy and Particle Tracking Velocimetry (PTV). Shadowgraphy provided gas-phase measurements of the bubble centroid velocity and its fluctuations, void fraction, bubble size, and Reynolds stresses. Five data sets were acquired for each flow rate, resulting in a total of 327,540 shadowgraphy images. Liquid parameters such as the velocity, fluctuations in the velocity, and the Reynolds stresses were provided by PTV. Only one data set containing 10,918 images was obtained from liquid measurements for each flow rate. One data set was sufficient to provide reliable statistics since tracking two consecutive images lead to approximately 15,000 velocity vectors. The data obtained from this study was an effort to assist in the verification, validation, and improvement of two-phase flow simulations.
|
284 |
Fast and robust phase behavior modeling for compositional reservoir simulationLi, Yinghui, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
285 |
Étude expérimentale de l'écoulement gaz-liquide dans un canal ouvert vers le bas /Toulouse, Dominic, January 2007 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, 2007. / La p. de t. porte en outre: Mémoire présenté à l'Université du Québec à Chicoutimi comme exigence partielle de la maîtrise en ingénierie. CaQCU Bibliogr.: f. 184-186. Document électronique également accessible en format PDF. CaQCU
|
286 |
Pressure loss associated with flow area change in micro-channelsChalfi, Toufik Yacine January 2007 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dr. Seyed M. Ghiaasiaan; Committee Member: Dr. Marc K. Smith; Committee Member: Dr. Sheldon M. Jeter
|
287 |
Estudo numérico e experimental da geração de golfadas em um escoamento bifásico de gás-líquidoConte, Marco Germano 28 November 2014 (has links)
O escoamento bifásico em golfadas está presente em diversos processos industriais, entre eles a produção e transporte do petróleo. Ele se caracteriza pelo escoamento de um pistão de líquido com grande quantidade de movimento seguido por uma bolha de gás compressível. A repetição destas estruturas ocorre de forma intermitente. Nas últimas décadas, surgiram alguns modelos para a simulação deste tipo de escoamento, como os modelos eulerianos de dois fluidos e drift flux, e lagrangeano de seguimento de pistões (slug tracking). Com base no trabalho de Renault (2007), uma metodologia lagrangeana foi desenvolvida para monitorar e acompanhar o processo de iniciação do escoamento em golfadas em tubulações horizontais e levemente inclinadas de modo autônomo. Partindo-se do modelo de dois fluidos com aproximação unidimensional, as equações de conservação de massa e balanço de quantidade de movimento foram simplificadas. O sistema de equações resultante para o domínio de gás foi discretizado utilizando-se o método de diferenças finitas e resolvido através do algoritmo TDMA. O movimento do líquido sob as bolhas foi modelado de modo semelhante às equações de águas rasas (shallow water equations). Um programa computacional na linguagem Intel Visual Fortran foi desenvolvido para simular o processo de iniciação do escoamento em golfadas, a partir do escoamento estratificado líquido-gás. O crescimento das ondas na interface líquido-gás foi monitorado numericamente, assim como os pistões de líquido que se formaram em decorrência do crescimento das ondas. Foram realizadas simulações numéricas, para diferentes condições de vazão de líquido-gás, com a finalidade de avaliar a capacidade do modelo de gerar pistões. Para a validação dos resultados numéricos, foram realizadas medidas experimentais na bancada de escoamento bifásico existente no NUEM/UTFPR. Os dados foram obtidos utilizando-se sensores resistivos. Foi verificada uma forte dependência dos resultados do modelo em relação à malha. Devido a isto, foi proposto um critério para limitar o refinamento máximo da malha. Uma análise linear levou a conclusão que o modelo apresenta maiores taxas de crescimento de onda em relação ao modelo de dois fluidos. Os resultados numéricos mostraram boa concordância com os dados experimentais, porém apresentam melhor desempenho quando próximos à região onde o modelo se encontra mal posto numericamente. / Many industrial processes like crude oil transportation in pipelines operate on two-phase flow regime, especially in slug flow pattern. Slug flows are characterized by the intermittent succession of liquid slugs having a large momentum, followed by long bubbles of compressible gas. This kind of flow has been a topic of research over the last decades; however, few mathematical models for this complex flow can be found in the literature. Among those, one might mention the Eulerian two-fluid and drift flux, and the Lagrangian slug-tracking. Based on the work of Renault (2007), this work presents a Lagrangian methodology to capture the process of slug initiation for horizontal and near horizontal pipes. Starting from one dimensional two-fluid model, the equations of momentum and mass conservation were simplified. The motion generated by the dynamic pressure of the gas was decoupled from the slow movement of the liquid film. The resulting system of equations for the gas phase was discretized using the finite difference method and solved with the tri-diagonal matrix algorithm (TDMA). The liquid motion in the bubbles was then modeled by a modified version of shallow water equations. A software using Intel Visual Fortran language to simulate the process of slug initiation in a gas-liquid stratified flow was developed. Wave growth in the liquid-gas interface was numerically monitored until one of those waves reached the top of the pipe to form a slug. Numerical simulations were performed for different gas-liquid flow conditions, in order to evaluate the ability of the model to generate slugs. Experimental data to validate the code were gathered at the experimental facility of NUEM/UTFPR. The data were acquired using two-wire resistive sensors. The numerical results showed to be strongly dependent on mesh size. Because of this, a limiting criterion for the mesh size was developed. The linear analysis showed higher wave growth rate to this model than the two-fluid model. The results showed consistency when compared to the experimental data, especially in the neighborhoods of the region where the model is ill-posed.
|
288 |
Métodos de análise de sinais de ultra-som para caracterização de escoamentos bifásicosMassignan, João Paulo Druzina 16 November 2009 (has links)
ANP; FINEP / Este trabalho apresenta um estudo sobre parâmetros do sinal de ultra-som que são afetados pelo escoamento bifásico água-ar, muito comuns em diversos processos industriais. Foi utilizado um par de transdutores no modo transmissão-recepção em um duto de acrílico com 54 mm de diâmetro interno. As técnicas utilizadas na análise do sinal foram a medição da velocidade do som por diversos métodos, a análise da energia e da amplitude máxima. Também é proposto o uso da atenuação em banda larga do ultra-som, uma técnica muito comum e utilizada no diagnóstico médico da osteoporose, mas pouco utilizada na indústria. Outra proposta foi utilizar o primeiro vale da onda de ultra-som recebida para normalização do sinal, evitando a necessidade de um sinal referência para a determinação da fração de vazios. É apresentada a metodologia teórica e os resultados dos experimentos que foram realizados em um circuito bifásico instalado no LABPETRO/UNICAMP. O hardware e software do sistema de aquisição de dados foram desenvolvidos no LASCA/UTFPR. / This work presents a study of ultrasound signal parameters that are affected by two-phase flow water-air present in several industrial process. A pair of ultrasound transducers in transmissionreception mode has been installed in a 54 mm inner diameter plexiglass pipe. Velocity measurement is calculated by many methods and also energy and maximum amplitude analysis was applied. Additionally, it is proposed a broadband ultrasound attenuation (BUA) based method to measure the void fraction. BUA is a very common method used to diagnoses osteoporosis but underused in industry. Other method based on a signal normalization by the first valley is developed to avoid the use of a reference signal to calibrate the prototype. Theoretical methods and experimental results are described. The results were obtained in a two phase circuit situated in LABPETRO/UNICAMP. The hardware and software of acquisition system were developed in LASCA/UTFPR.
|
289 |
[en] EMULSION FORMATION IN THE TWO-PHASE OIL-WATER FLOW THROUGH SMALL PASSAGES / [pt] FORMAÇÃO DE EMULSÃO NO ESCOAMENTO BIFÁSICO DE ÓLEO E ÁGUA ATRAVÉS DE ORIFÍCIOSEDUARDO MARTIN CABELLOS VILLALOBOS 26 November 2010 (has links)
[pt] A produção de óleo diminui e a produção de água aumenta com o passar do
tempo na vida de um reservatório. A mistura de óleo e água é geralmente
produzida na forma de uma emulsão. A formação da emulsão começa no
escoamento bifásico no interior do reservatório e sua estrutura muda na medida
em que os líquidos escoam através de tubulações, bombas e válvulas até as
instalações de superfície. Durante a produção, as gotas maiores da fase dispersa
quebram-se mudando a distribuição do tamanho das gotas. É importante conhecer
a distribuição de tamanho de gota da fase dispersa da emulsão a fim de projetar as
unidades de separação e prever as quedas de pressão ao longo do escoamento. O
objetivo do presente trabalho é o estudo do processo de quebra de gotas em
capilares retos e válvulas agulha a fim de prever o tamanho das gotas resultantes
em função das condições de escoamento. O principal desafio é entender como os
diferentes parâmetros operacionais de escoamento afetam o processo de quebra.
Duas bancadas experimentais foram utilizadas para o estudo do processo. Na
primeira, foi realizada uma análise paramétrica de formação de emulsões em um
escoamento laminar através de capilares retos. Os experimentos foram realizados
utilizando duas seringas conectadas através de um capilar. A emulsão óleo-emágua
foi forçada a uma passagem de ida e vinda através do capilar. O diâmetro
médio de gota e a superfície específica da fase dispersa foram obtidos em função
da vazão de injeção, taxa de cisalhamento, tempo de residência e trabalho
dissipado na parede do capilar. Como esperado, o diâmetro médio da fase dispersa
diminui com o aumento do tempo de cisalhamento atingindo um valor assintótico
e possui uma grande dependência com a taxa de cisalhamento na parede do
capilar. Na segunda bancada, foi realizada uma análise paramétrica de um
escoamento turbulento de emulsão óleo-em-água através de uma válvula agulha.
Os experimentos foram realizados utilizando uma bomba helicoidal para controlar
a vazão através da válvula. O diâmetro médio de gota e a superfície específica da
fase dispersa a montante e a jusante da válvula foram obtidos em função da queda
de pressão, vazão e taxa de dissipação de energia na válvula. O diâmetro médio da
fase dispersa diminui e a superfície específica aumenta com o aumento da queda
de pressão na válvula agulha até atingir um valor assintótico. / [en] Oil production decreases and water production increases as time goes by in
the life of a hydrocarbon reservoir. The mixture of oil and water is usually
produced as an emulsion. Emulsion formation starts in the two-phase flow inside
the reservoir. The emulsion structure changes as it flows through pipes, pumps
and valves up to the surface facilities. During all stages, large drops of the
dispersed phase break up leading to smaller drops. It is important to know the
droplet size distribution of the dispersed phase in order to design separation units
and predict the pressure drop along the flow. The aim of the this work is to study
the droplets break-up process that takes place in capillaries and in a needle valve
in order to make predictions of the size of the resulting droplets that emerge from
this process. The main challenge is to understand how the different operating flow
parameters affect the break up process. In order to achieve this goal, two
laboratory scale experimental set-ups have been used. In the first experiment, we
conducted a parametric analysis of oil-water emulsion formation in laminar flow
through straight capillaries. The experiments were carried out using two syringe
pumps connected by a double-hubbed capillary pipe. The oil-water emulsion is
forced back and forth through the pipe. The mean diameter and the specific
surface area of the dispersed phase were obtained as a function of flow rate, shear
rate, residence time and rate of energy dissipation at the capillary wall. As
expected, keeping all other variables fixed, the dispersed phase mean diameter
decreases with the shearing time, reaching an asymptotic value, which was a
strong function of the shear rate at the capillary wall. Secondly, we conducted a
parametric analysis of turbulent oil-in-water emulsion flow through a needle
valve. The experiments were carried out using a helicoidal pump to control the
flow rate through the needle valve. The mean diameter and the specific surface
area of the dispersed phase upstream and downstream of the valve were obtained
as a function of the pressure drop in the valve, flow rate, and rate energy
dissipation of the flow. The dispersed phase mean diameter falls and the specific
surface area rises with the pressure drop in the valve until reaching an asymptotic
value.
|
290 |
Simulation numérique directe des écoulements à phases disperséesVoronetska, Kateryna 29 March 2012 (has links)
Dans l'industrie du pétrole et des moteurs, les écoulements de fluides non-miscibles sont fréquemment rencontrés : écoulements d'hydrocarbures dans les conduites, séparation en production, injection de carburant dans les moteurs, procédés de raffinage, etc.Pour modéliser ce type d'écoulement, deux approches sont possibles. Soit l'écoulement est décrit de façon macroscopique et les phénomènes locaux (rupture et coalescence des gouttes, glissement des phases, compaction locale, etc.) sont modélisés à l'aide de lois de fermeture analytiques ou empiriques. Soit l'écoulement est modélisé de manière directe à l'échelle de la goutte et on s'attache à décrire précisément l'interface et les interactions entre les phases. C'est cette dernière approche que nous avons proposé d'adopter pour étudier des écoulements à phase dispersée liquide-liquide, et plus particulièrement les phénomènes de rupture et coalescence, collision ou déformation de gouttes. Ainsi, le but principal de ce travail de thèse a été le développement d'un code de simulation numérique directe capable de modéliser un écoulement diphasique liquide-liquide, afin d'étudier en détail les effets de coalescence et de rupture entre les gouttes. Ce travail a nécessité l’utilisation d’une technique de suivi d’interface appropriée et le développement d’un solveur des équations de Navier-Stokes incompressible pour calculer le champ de vitesse, ainsi qu’une méthode de couplage entre ces deux solveurs pour la simulation des écoulements diphasiques. Notre outil numérique a été validé sur de nombreux cas tests académiques et appliqué à l'étude du processus de séparation liquide-liquide. / The flow of immiscible fluids is a frequent issue in the petroleum industry: hydrocarbon in pipelines, separation process for production, fuel injection in engines, refinery treatment processes, etc.There are two possible approaches to model this type of flow. In the first one, the flow is described macroscopically. In this case, local phenomena (breakage or coalescence of droplets, phase slip, local compaction) are modeled thanks to analytic closure laws or empiric laws. In the second approach, the flow is simulated indirectly on a scale of droplet and we want to describe precisely the interface and the interactions between phases. We propose here to consider the second method to study liquid/liquid dispersed flows and especially the phenomena of breakage or coalescence and collision or distortion of the droplets.Thus, the main purpose of this work was the development of a direct numerical simulation code that is capable to model a liquid-liquid two-phase flow, in order to study in detail the effects of droplets coalescence and breakage. To model a two-phase flow, it is necessary to choose an appropriate interface tracking method and to develop a solver for Navier-Stokes incompressible equations to compute the velocity and pressure values. Also, a coupling method that is able to handle the discontinuous quantities at the interface has to be implemented. Our numerical tool has been validated on numerous academic test cases and applied to study the process of liquid-liquid separation.
|
Page generated in 0.0435 seconds