• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 17
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theoretical evaluation of the nonlinear optical properties of extended and π-conjugated chromophores

Ohira, Shino 18 June 2009 (has links)
The nonlinear optical (NLO) properties were investigated in various extended π-conjugated chromophores: cyanine and alkyne carbocations; porphyrin dimers; and squaraine compounds that possess electronic, double resonance, and vibronic based NLO properties. In summary: (i) It was demonstrated that the alkyne carbocations have very similar optical properties to traditional cyanine dyes. Our theoretical results establish that the alkyne carbocations, in spite of their significant degree of bond-length alternation, behave in the same way as cyanine dyes. (ii) The nature of the -bridge in porphyrin dimers tunes the electronic coupling strength, which in turn determines the splitting of the energy levels and the (non)linear optical properties. (iii) We have shown that the origin of the lowest TPA-active states in squaraines is dependent on the nature of substituent donor moiety, changing from predominantly electronic to vibronic in character. For all squaraines containing indolinylidenemethyl donors, a vibronic origin for the TPA peak, and the energy and lineshape of the experimentally observed lowest TPA peak in these compounds were confirmed.
12

Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-gap Semiconductors

Cirloganu, Claudiu 01 January 2010 (has links)
The general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other semiconductors and a new theory using a Kane 4-band model is developed which fits new data well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton absorption, free-carrier nonlinearities and decay mechanisms. The non-degenerate two-photon absorption was investigated in several direct-gap semiconductors with picosecond and femtosecond pulses. Large enhancements in 2PA were demonstrated when employing highly non-degenerate photon pairs and the results were shown to be consistent to a simple 2-parabolic band theory based on a "dressed" state approach. The nonlinear refractive index induced in such configurations was also calculated and possible implications of such extreme behavior are discussed. A large number of measurements of 3PA were taken at multiple wavelengths and in several semiconductors. The subsequent analysis has shown that simple 2-band model calculations (based on either perturbative or tunneling approaches) do not adequately describe the experimental trends. A more comprehensive model, based on Kane’s 4-band theory was developed and we calculate three-photon spectra for zincblende structures within the perturbative iv framework. We have confirmed the results of our calculations performing a series of Z-scans in semiconductors ZnSe and ZnS, yielding complete experimental three-photon spectra. A systematic approach based on using a large variety of pulse durations was needed to quantify the wealth of nonlinear optical processes in InSb, accessible in the mid-infrared range. Femtosecond pulses provided a lower limit to measurements of the instantaneous effects (absorptive and refractive), while picosecond pulses allowed further characterization of the freecarrier effects, including population dynamics in the high density regime (Auger effects). The model developed permitted us to verify the temperature dependence of free-carrier absorption recently predicted, and to successfully model optical limiting data with longer, nanosecond pulses.
13

Design, Synthesis And Characterization Of New Two-photon Absorbing (2pa) Fluorescent Dyes And Bioconjugates, And Their Applications In Bioimaging

Andrade, Carolina D. 01 January 2010 (has links)
The development of new multiphoton absorbing materials has attracted the attention of researchers for the last two decades. The advantages that multiphoton absorbing materials offer, versus their one-photon absorbing counterparts, rely on the nature of the nonlinearity of the absorption process, where two photons are absorbed simultaneously offering increased 3D resolution, deeper penetration, and less photobleaching and photodamage as a result of a more confined excitation. The applications of efficient two-photon absorbing materials have been extensively expanding into the fields of photodynamic therapy, microscopy, and optical data storage. One of the fields where an increased interest in multiphoton absorbing materials has been most evident is in bioimaging, in particular, when different cellular processes and organelles need to be studied by fluorescence microscopy. The goal of this research was to develop efficient two-photon absorption (2PA) compounds to be used in fluorescence bioimaging, meaning that such compounds need to posses good optical properties, such as high fluorescence quantum yield, 2PA cross section, and photostability. In the first chapter of this dissertation, we describe the synthesis and structural characterization of a new series of fluorescent donor–acceptor and acceptor-acceptor molecules based on the fluorenyl ring system that incorporated functionalities such as alkynes and thiophene rings, through efficient Pd-catalyzed Sonogashira and Stille coupling reactions, in order to increase the length of the conjugation in our systems. These new molecules proved to have high two-photon absorption (2PA), and the effect of these functionalities on their 2PA cross section values was evaluated. Finally, their use in two-photon fluorescence microscopy (2PFM) imaging was demonstrated. iii One of the limitations of the compounds described in Chapter 1 was their poor water solubility; this issue was addressed in Chapter 2. The use of micelles in drug delivery has been shown to be an area of increasing interest over the last decade. In the bioimaging field, it is key to have dye molecules with a high degree of water solubility to enable cells to uptake the dye. By enclosing a hydrophobic dye in Pluronic® F-127 micelles, we developed a system that facilitates the use of 2PA molecules (typically hydrophobic) in biological systems for nonlinear biophotonic applications, specifically to image the lysosomes. Furthermore, we report in this chapter the efficient microwave-assisted synthesis of the dye used in this study. In addition, linear photophysical and photochemical parameters, two-photon absorption (2PA), and superfluorescence properties of the dye studied in Chapter 2, were investigated in Chapter 3. The steady-state absorption, fluorescence, and excitation anisotropy spectra of this dye were measured in several organic solvents and aqueous media. In Chapter 4, we describe the preparation and the use of an efficient and novel twophoton absorbing fluorescent probe conjugated to an antibody that confers selectivity towards the vascular endothelial growth factor receptor 2 (VEGFR-2) in porcine aortic endothelial cells that express this receptor (PAE-KDR). It is known that this receptor is overexpressed in certain cancer processes. Thus, targeting of this receptor will be useful to image the tumor vasculature. It was observed that when the dye was incubated with cells that do not express the receptor, no effective binding between the bioconjugate and the cells took place, resulting in very poor, nonspecific fluorescence images by both one and two-photon excitation. On the other hand, when the dye was incubated with cells that expressed VEGFR-2, efficient imaging of the cells was obtained, even at very low concentrations (0.4 μM). Moreover, incubation of the bioconjugate iv with tissue facilitated successful imaging of vasculature in mouse embryonic tissue
14

Nonlinear Absorption And Free Carrier Recombination In Direct Gap Semiconductors

Olszak, Peter D. 01 January 2010 (has links)
Nonlinear absorption of Indium Antimonide (InSb) has been studied for many years, yet due to the complexity of absorption mechanisms and experimental difficulties in the infrared, this is still a subject of research. Although measurements have been made in the past, a consistent model that worked for both picosecond and nanosecond pulse widths had not been demonstrated. In this project, temperature dependent two-photon (2PA) and free carrier absorption (FCA) spectra of InSb are measured using femtosecond, picosecond, and nanosecond IR sources. The 2PA spectrum is measured at room temperature with femtosecond pulses, and the temperature dependence of 2PA and FCA is measured at 10.6µm using a nanosecond CO2 laser giving results consistent with the temperature dependent measurements at several wavelengths made with a tunable picosecond system. Measurements over this substantial range of pulse widths give results for FCA and 2PA consistent with a recent theoretical model for FCA. While the FCA cross section has been generally accepted in the past to be a constant for the temperatures and wavelengths used in this study, this model predicts that it varies significantly with temperature as well as wavelength. Additionally, the results for 2PA are consistent with the band gap scaling (Eg-3 ) predicted by a simple two parabolic band model. Using nanosecond pulses from a CO2 laser enables the recombination rates to be determined through nonlinear transmittance measurements. Three-photon absorption is also observed in InSb for photon energies below the 2PA band edge. Prior to this work, data on three-photon absorption (3PA) in semiconductors was scarce and most experiments were performed over narrow spectral ranges, v making comparison to the available theoretical models difficult. There was also disagreement between the theoretical results generated by different models, primarily in the spectral behavior. Therefore, we studied the band gap scaling and spectra of 3PA in several semiconductors by the Z-scan technique. The 3PA coefficient is found to vary as (Eg-7 ), as predicted by the scaling rules of simple two parabolic band models. The spectral behavior, which is considerably more complex than for 2PA, is found to agree well with a recently published theory based on a fourband model.
15

Two-photon Cross Section Enhancement of Photochromic Compounds for Use in 3D Optical Data Storage

Luchita, Gheorghe 01 January 2011 (has links)
Rewritable photochrome-based 3D optical data storage requires photochromic molecules with high two-photon absorption (2PA) cross sections. Currently, the low value of two-photon absorption cross sections of existing photochromes makes them unsuitable for practical application in 3D data storage. Worldwide attempts to increase the cross section of photochromic molecules by altering the chemical structure have yielded poor results. In this work, two ways to increase the two-photon absorption cross sections of photochromes were investigated. In the first method, partial success demonstrated by extending the conjugation of a photochromic molecule, a high two-photon absorption cross section of the closed form isomer and high photoconversion to the closed form were realized. At the same time, a decrease in photoswitching quantum yield and low photoconversion to open form was observed. A discussion is provided to explain the results, suggesting that the proposed method of extending the conjugation may not solve the problem. For this reason a new method for effective two-photon absorption cross section enhancement of photochromes was proposed. As a proof of principle, a new two-photon absorbing dye with a hydrogen bonding moiety was synthesized and used for the formation of supramolecular structures with a photochromic compound. Theoretical reasoning and experimental demonstration of energy transfer from the dye to the photochrome under one and two-photon excitation confirmed the practical value of the method. The effects of a 2PA dye on the photochromic properties of a diarylethene were investigated using a model compound to simplify data analysis. Formation of supramolecular structures was revealed using ¹H NMR spectroscopic methods. The model compound, having the same hydrogen bonding moiety as 2PA dye, has been demonstrated to bind with photochrome molecules at very low concentrations. Photochromic properties of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleimide, including conversions at the photostationary state, extinction coefficients, photoisomerization reaction rates and quantum yields, were shown to be affected by hydrogen bonding with the model compound - 2,6-bis-(acetamido)pyridine. The extent of this change was determined and discussed, demonstrating a balanced supramolecular strategy to modulate photochemical and photophysical properties of this important class of photochromic material.
16

Squaraine dyes for non-linear optics and organic electronics

Shi, Yanrong 05 May 2011 (has links)
This dissertation describes the investigation of the synthesis and characterization of new squaraine-based photonic and electronic materials. In the first part of this thesis, squaraine dyes with large conjugation systems, including extended squaraines consisting of bis(donor)substituted vinylene-heterocycles and bis(indolinylenemethyl)squaraine-based oligomers linking through different π-bridges were designed, synthesized and characterized to exhibit strong two-photon absorption (2PA) for femotosecond and nanosecond optical-power limiting applications in the near-infrared (NIR). One of the dendronized squaraine forms smooth and high optical quality films with large NIR transparency window. In the second part, a series of squaraine- and phthalocyanine-based metal complexes were studied. Those dyes did not show large triplet quantum yield but significantly improved photovoltaic performance compared to the metal-free compounds. In the last part, an effective approach on optimizing bis(indolinylenemethyl)-based squaraine sensitizers with various surface anchor groups and π-linkers, achieved high power conversion efficiencies (PCEs) of 6.7% in liquid dye-sensitized solar cells (DSSCs) and 2.7% in solid-state DSSCs, which stand out all the previous reported squaraine-based sensitizers.
17

In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging

Freeman, Kim Renee 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The sympathetic nervous system strongly modulates the contractile and electrical function of the heart. The anatomical underpinnings that enable a spatially and temporally coordinated dissemination of sympathetic signals within the cardiac tissue are only incompletely characterized. In this work we took the first step of unraveling the in situ 3D microarchitecture of the cardiac sympathetic nervous system. Using a combination of two-photon excitation fluorescence microscopy and computer-assisted image analyses, we reconstructed the sympathetic network in a portion of the left ventricular epicardium from adult transgenic mice expressing a fluorescent reporter protein in all peripheral sympathetic neurons. The reconstruction revealed several organizational principles of the local sympathetic tree that synergize to enable a coordinated and efficient signal transfer to the target tissue. First, synaptic boutons are aligned with high density along much of axon-cell contacts. Second, axon segments are oriented parallel to the main, i.e., longitudinal, axes of their apposed cardiomyocytes, optimizing the frequency of transmitter release sites per axon/per cardiomyocyte. Third, the local network was partitioned into branched and/or looped sub-trees which extended both radially and tangentially through the image volume. Fourth, sub-trees arrange to not much overlap, giving rise to multiple annexed innervation domains of variable complexity and configuration. The sympathetic network in the epicardial border zone of a chronic myocardial infarction was observed to undergo substantive remodeling, which included almost complete loss of fibers at depths >10 µm from the surface, spatially heterogeneous gain of axons, irregularly shaped synaptic boutons, and formation of axonal plexuses composed of nested loops of variable length. In conclusion, we provide, to the best of our knowledge, the first in situ 3D reconstruction of the local cardiac sympathetic network in normal and injured mammalian myocardium. Mapping the sympathetic network connectivity will aid in elucidating its role in sympathetic signal transmisson and processing.

Page generated in 0.1145 seconds