• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Fundamental Turbulent Physics Using Direct Numerical Simulation

Nilsson, Michael A 01 January 2009 (has links) (PDF)
It has been shown in many studies that turbulent flows are highly dependent on their initial conditions. This thesis explores turbulent flow using direct numerical simulation (DNS) in a variety of situations, and culminates in the development of physically realizable initial conditions. The reaction of isotropic homogeneous turbulent flow to the instantaneous insertion of a wall is investigated using two-point correlations. A model with which to predict the behavior of the two-point correlations is also proposed. The proposed model utilizes a reflection technique that with a linear operation, it accurately predicts the behavior of the non-linear two point correlations. The model works exceedingly well for correlations involving wall-perpendicular velocities, but does not predict correlations involving only wall-parallel velocities as well. A vorticity approach is covered, in an effort to highlight which parts of the correlation decomposition are important to the prediction of the correlations after wall imposition. The vorticity study also helps highlight why the proposed linear model predicts the flow. The impact of the initial conditions on axisymmetric contraction flow of turbulent flow is examined, and as a consequence new initial conditions are developed based off of a physically realizable flow condition. The development of the new-initial conditions and the resulting fields are covered, as well as a study on the value of the turbulent decay exponent associated with decay of isotropic turbulent velocity fields.

Page generated in 0.1208 seconds